Sample Exam #2A

A. Nomenclature (3 points each; 9 total points)

Please provide an acceptable name for each of the following compounds, noting stereochemistry where appropriate.

1.

2.

3.

B. Facts (25 total points)

1. Label the following molecules as aromatic, non-aromatic, or anti-aromatic. (2 pts each)

2. Provide a reasonable estimate of the pK_a for the following molecules. (1 pt each)

 $\begin{array}{c} H \stackrel{\textcircled{\scriptsize Φ}}{\searrow} H \\ \hline \end{array}$

H_F

—=-н

ОН

H H

3. Rank the following amines from least (1) to most (3) basic. (1 pt each)

C. Reactions (7 points each; 28 total points)

Please provide the **major product**, **necessary reagents**, or **starting materials** in the **box** provided below. Be sure your drawing indicates stereochemistry if applicable.

1.
$$O_{OCH_3}$$
 O_{2N} O_{2N}

Reactions (continued)

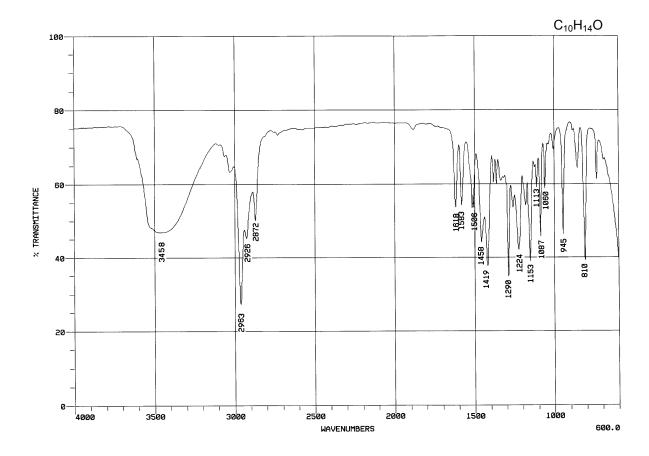
3.

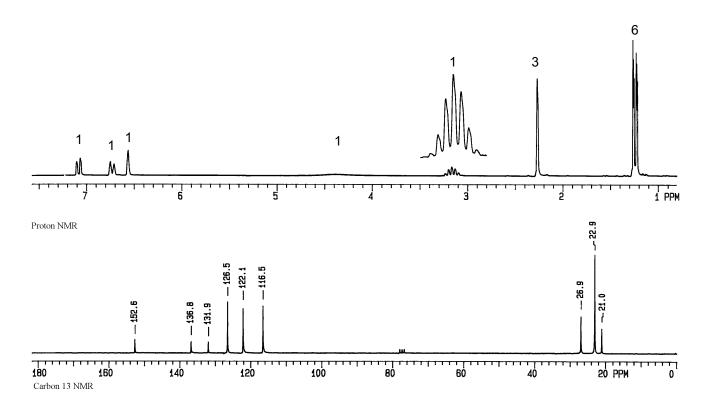
4.

1.
$$Cl_2$$
, $AlCl_3$ (1 equiv.)
2. $KMnO_4$, H_2O , Δ
3. CH_3OH / H^+
4. NH_3 , Δ , pressure

D. Mechanism (14 points)

Phenolphthalein, a common nonprescription laxative, is also an acid-base indicator that is colorless in acid and red in base. Phenolphthalein is synthesized by the acid-catalyzed reduction of phthalic anhydride with 2 equivalents of phenol. Draw a mechanism for the formation of phenolphthalein, using curved arrows to indicate "electron flow". Show all intermediates and all formal charges.


E. Synthesis (14 points)


Noting stereochemistry, synthesize the molecule below using any of the following reagents: alkanes, alkenes, or alkynes having **no more than <u>two</u> carbon atoms**, any inorganic reagents, any oxidizing or reducing agents, any peroxyacids, and benzene.

$$\mathsf{MeO} \hspace{-2pt} \longleftarrow \hspace{-2pt} \mathsf{NO}_2$$

F. Spectroscopy	(10 total points)
-----------------	-------------------

A compound with the formula $C_{10}H_{14}O$ exhibits the IR, 1H NMR, and proton-decoupled ^{13}C NMR spectra shown on the following page. Please identify this compound and draw the structure in the box provided below.

