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Abstract
Whereas piezoelectric pressure sensors (PPSs) have been applied in the monitoring of human body movement and 
physiological parameters, they show inherent limitations in wearable applications, including toxicity, degradation, 
and brittleness. In this study, we develop safe, stable, and mechanically flexible composite thin films consisting of 
polyvinylidene fluoride (PVDF), BaTiO3 nanoparticles (BTO-NPs), and textured aluminum nitride (AlN) thin film for 
the demonstration of wearable PPS with enhanced output performance and biocompatibility. The PPS made of 
BTO-NP-embedded-PVDF and AlN film on Cu foil is attached to different parts of human body to measure different 
output voltages depending on the physiological and physical stimulus. The simple bending (from breathing, 
chewing, and swallowing), joint motions (at wrist, elbow, and finger), and low- (from eyeball movement) and high-
pressure applications (by squat, lunge, and walking) are measured. Our PVDF+BTO-NP/AlN-PPS (PBA-PPS) 
device has the potential for personal safety, healthcare, and activity monitoring applications with easy wearability.
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INTRODUCTION
Wearable and skin-attachable piezoelectric pressure sensors (PPSs), which convert mechanical energy into 
electrical energy (especially voltage), offer several benefits in personal healthcare and safety systems, such as 
sensitive response to stress/strain, self-powered, low-cost, easily-expandable, portable, and secure 
properties. Therefore, PPSs have been developed for the detection of physical and physiological signals such 
as blood pressure[1-5], respiration[6,7], muscle motion[8,9], heart rate[4,10,11], joint motion[12-15], and so on. Various 
piezoelectric materials, including lead zirconate titanate (Pb[ZrxTi1-x]O3, PZT)[3], zinc oxide (ZnO)[16,17], 
barium titanate (BaTiO3, BTO)[8,18], polyvinylidene fluoride (PVDF)[6,19], and single-crystalline Group-III-
nitrides (III-Ns)[10,20], have been employed for the development of PPSs. Among them, PZT has been most 
widely adopted due to its excellent piezoelectric properties. However, PZT-based PPSs raise serious safety 
concerns in wearable applications, while they can be used in other general applications for containing a 
substantial amount (~20%) of a toxic element, lead (Pb). Skin-contacting wearable sensors should be free 
from harmful elements because deleterious materials can be absorbed into the human body. ZnO poses no 
harm to health; however, it is not chemically stable[21]. Devices based on ZnO are prone to degradation, 
which makes such devices more suitable for transient electronics instead of wearable applications[21].

Other piezoelectric materials, PVDF, BTO, and III-N thin films, can be considered alternatives to PZT and 
ZnO. They are relatively stable and non-toxic, and can be mechanically flexible. However, each of them also 
possesses its own intrinsic limitation. Although PVDF polymers have excellent flexibility, they show low-
efficiency piezoelectric conversion that is insufficient to generate substantial output voltage from a 
mechanical stimulus. BTO has high piezoelectric coefficients (similar to PZT), but its flexibility is limited, 
which makes the sensor difficult to attach to the skin. Single-crystalline III-N thin films have been reported 
for excellent performance in energy harvesting applications[22]. However, the fabrication of single-crystalline 
III-N films relies on rather a complicated process consisting of epitaxial growth followed by a layer-transfer 
technique[23]. Therefore, most III-N films for piezoelectric applications are deposited by sputtering[24,25], 
which leads to c-axis textured but not single-crystalline films. The crystalline defects of polycrystalline III-N 
materials cause leakage currents between the top and bottom electrodes that degrade the piezoelectric 
output[26,27].

In the present study, we integrate III-N film with BTO nanoparticles (BTO-NPs) encapsulated in PVDF 
films (i.e., PVDF+BTO-NP/AlN (PBA) composite films) to demonstrate working PPSs for various wearable 
applications to overcome the limitation of each material. The PBA films generate improved output voltages 
compared to PVDF films and minimize the leakage current of sputtered AlN films. Our PBA sensor is 
applied to monitor human physiological signals and movements, including skin contour changes (from 
breathing, chewing, swallowing, and eye movements), joint motion (at the wrist, elbow, and finger), and 
high-pressure movements (from squatting, lunging, and walking).

EXPERIMENTAL
Figure 1 illustrates the steps used to prepare the PBA sensors, including AlN sputtering deposition on Cu 
foil substrates [Figure 1A], synthesis of BTO-NP-embedded PVDF films on AlN/Cu [Figure 1B and C], and 
fabrication of the PPS devices [Figure 1D-F].
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Figure 1. Illustration of the steps used to prepare the PBA sensor. (A) AlN sputtering deposition on Cu foil; (B) PVDF solution; (C) BTO-
NP dispersion in PVDF; (D) PVDF+BTO-NP solution casting on AlN/Cu foil then spin coating and drying of PVDF+BTO-NP film; (E) 
wiring and PDMS sealing; and (F) Schematic diagram of PBA sensor. PBA: PVDF+BTO-NP/AlN; AlN: aluminum nitride; BTO-NP: 
BaTiO3 nanoparticle; PVDF: polyvinylidene fluoride.

AlN film deposition
AlN thin films were deposited on 60-μm-thick Cu foil (American Elements, CA, USA) by DC reactive 
magnetron sputtering (AJA International) equipped with a DC power supply (Advanced Energy MDX 500). 
Before the sputtering, pre-sputtering was carried out to clean the aluminum (Al) target (1.5-inch diameter, 
99.5%, AJA International) using argon-ion (Ar+) bombardment. The pressure of the sputtering chamber was 
controlled at 10-9 Torr and 2 mTorr for base and working conditions, respectively. The working pressure 
was set by adjusting a gate valve of a cryopump. The AlN films were deposited at a DC cathode power of 
110 W in plasma consisting of Ar and nitrogen (N2) mixture, which were introduced into the chamber by 
separate mass flow controllers. The sample holder was automatically rotated at 20 revolutions per minute 
(rpm) during deposition to obtain a uniform AlN film with a thickness of ~200 nm. After the deposition, 
post-sputtering was performed to prevent the poisoning of the Al target.

Synthesis of PVDF-BaTiO3 films on AlN
BTO-NPs were synthesized by modifying a previously reported method based on two metal precursors, 
BaCl2·2H2O and TiCl4

[28]. Polyvinylpyrrolidone (PVP) was used as a surfactant in the presence of sodium 
hydroxide (NaOH). An aqueous solution of BaCl2·2H2O was mixed with PVP at room temperature. Once 
the PVP was completely dissolved, the mixture was cooled in an ice bath, and then TiCl4 was added while 
stirring. NaOH solution was gradually added to the mixture heated to 80 °C using a syringe pump, stirring 
constantly for 1 h. The solution was washed and centrifuged (6000 rpm for 10 min) twice with deionized 
water and then twice with ethanol. The precipitates (BTO-NPs) on the bottom of the container were 
collected and dried in the oven at 60 °C for 24 h.

BTO-embedded PVDF films were prepared by a simple spin-coating technique. PVDF pellets (15 wt.%) 
were completely dissolved in dimethylsulfoxide (DMSO) at 60 °C with vigorous stirring, followed by the 
addition of BTO-NPs (5, 10, and 30 wt.%). Once the BTO-NPs were uniformly dispersed in the PVDF 
solution, the mixture was spin-coated on an AlN/Cu film at 2500 rpm for 30 seconds and then dried in air. 
The thickness of PVDF+BTO-NP film was ~10 μm. Electric poling was conducted using a high-voltage 
power supply (PS325, Stanford Research Systems, CA, USA). For electric poling, wires of the PBA sensor 
were connected to a power supply, and then the output potential of the power supply was gradually 
increased from 0 to 2.5 kV then maintained for 1 h.
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PPS device fabrication
A Cu foil substrate served as a bottom electrode. Silver wires were connected using silver paste (Ted Pella, 
CA, USA) and conductive Cu tape (3 M, single-sided) on both top and bottom electrodes. Then, liquid 
PDMS (Dow Corning Sylgard 184) was mixed with curing agent at a weight ratio of 10:1, and the mixed 
suspension was slowly dropped on the fabricated sensor to seal the device. Then, the packaged PBA sensor 
was placed in an electric oven at 90 °C for 3 h for curing. A biocompatible tape (3 M clear medical tape roll, 
double-sided) was used for the attachment of the PPS device to the volunteer’s skin.

Structural characterizations of films
The phases of the PVDF film were characterized by Fourier-transform infrared spectroscopy (FTIR) using 
an attenuated total reflectance infrared spectroscope (ATR-IR, Nicolet iS10, Thermo Fisher Scientific, MA, 
USA) in the range of 500-1500 cm-1 at a resolution of 2 cm-1. The crystal structure and quality of the 
deposited AlN thin film, PVDF, and BTO-NP-embedded PVDF were characterized using a high-resolution 
X-ray diffractometer (Bruker D8 Discover). The surface of the BTO-NP-containing PVDF film was 
observed by an optical microscope (Nikon Eclipse LV100ND) to monitor the differences in morphology 
originating from the various BTO contents.

Piezoelectric property characterizations
The prepared PVDF+BTO-NP/AlN-PPS (PBA-PPS) device was deflected by a custom-made piezoelectric 
test station composed of a digital micrometer drive (Mitutoyo) and a program-controlled motor (Anaheim 
Automation). The electrical signals from the sensor with different types of bending and force were 
measured by an electrometer (Keithley 6514) with LabVIEW-based software.

RESULTS AND DISCUSSION
Materials characterizations
Figure 2A shows the FTIR spectrum of the BTO-NP-embedded PVDF films. Different phases of PVDF can 
be identified by the specific wavenumbers of the peaks at 1431, 1275, 1234, 840, 812, 763, and 510 cm-1 
corresponding to β + γ, β, γ, β + γ, γ, α, and β + γ phases, respectively. Four common peaks for all the phases 
of PVDF were also observed at 880, 1073, 1174, and 1403 cm-1[29-32]. The signal of the BTO-NPs is almost 
negligible compared to the PVDF-related peaks. Analysis of the peaks shows (except for a small peak at 
763 cm-1 corresponding to the α phase) that the PVDF composites consist predominantly of β and γ phases, 
which possess piezoelectric properties[29-32]. The ratio of β-to-γ phases (β/γ) and the fraction of electroactive 
phases (FEA) in the PVDF can be calculated using the following equations[30,31],

where A1275, A1234, A840, and A763 are the intensities of the peaks at 1275, 1234, 840, and 763 cm-1. The β-to-γ 
ratio and FEA are estimated to be 1.1167 and 0.8396, respectively, from Figure 2A, leading to the relative 
amounts of β, γ, and α phases being ~0.44, ~0.40, and ~0.16, respectively. Figure 2B shows the X-ray 
diffraction (XRD) 2θ scan of the same film. The peaks related to the various planes of BTO confirm the 
presence of BTO-NPs. The peak near 20° is related to PVDF as the sum of the diffractions from β phase 
(200) and γ phase (101)[29-32]. The peaks at 24° and 33.76° corresponding to the (111) and (200) planes of 
BaCO3; this byproduct arises from the reaction with CO2 during the synthesis of the BTO-NPs. Figure 2C 
shows the XRD 2θ-ω scan of sputtered AlN thin films on Cu foil. The (002) and (004) peaks at 36.02° and 
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Figure 2. Characterization results of the films. (A) FTIR and (B) XRD of PVDF+BTO film. (C) XRD of AlN on Cu foil. FTIR: Fourier-
transform infrared spectroscopy; PVDF: polyvinylidene fluoride; BTO: BaTiO3; AlN: aluminum nitride.

Figure 3. Optical microscope images of PVDF films with (A) 5 wt.%; (B) 10 wt.%; and (C) 30 wt.% BTO-NPs. PVDF: Polyvinylidene 
fluoride; BTO-NP: BaTiO3 nanoparticle.

76.2°, respectively, are dominant, suggesting that the AlN films consist mostly of uniaxial-textured wurtzite 
crystal grains with the c-axis aligned in the out-of-plane direction. The films also show various small peaks 
related to (100), (101), (102), (110), (103), and (112), suggesting that the AlN is polycrystalline containing 
grain boundaries, which can give rise to leakage currents. The other peaks at 43.26°, 50.3°, and 74.12° arise 
from the foil substrate and correspond to the (111), (200), and (220) planes of Cu, respectively.

Figure 3 shows optical microscope images of the PVDF films with selected contents of BTO-NPs: 5 wt.%, 10 
wt.%, and 30 wt.%. The films with 5 wt.% and 10 wt.% [Figure 3A and B] show numerous macro-pores 
(larger than 20 μm), which hamper robust film fabrication. The PVDF films with 5 wt.% and 10 wt.% of 
BTO-NPs are easily exfoliated during the drying step on both Cu foil and sputtered-AlN/Cu mainly due to 
shrinkage. In contrast, the films with 30 wt.% BTO-NPs shows significantly reduced pore sizes [Figure 3C], 
which indicates the capacity for uniform coverage of the AlN thin films. As a result, the PVDF film is 
mechanically stable, resisting exfoliation from the substrate. A large number of BTO-NPs are dispersed in 
the PVDF/DMSO solution during mixing, which increases the interfacial area and synergistic interactions 
with the PVDF backbone[33]. Given these considerations, we focused on PVDF with 30 wt.% BTO-NPs for 
device fabrication.

Sensing mechanism and fundamental piezoelectric characteristics
Figure 4 illustrates the piezoelectric voltage generation from bending by external force or deflection. The 
sensor is attached to skin surfaces, which are mostly curved (e.g., chin, neck, finger, and wrist). The sensor 
can be further bent up or down on the surface of the human body, then released to the initial curved state 
by the movements of muscles or joints, leading to a change of polarization in the piezoelectric film. Cu foil 
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Figure 4. Sensing mechanism of piezoelectric sensor with (A) bend-up and (B) bend-down conditions followed by releasing to the 
initial state before bending.

Figure 5. Characterization of electromechanical conversion of different piezoelectric films. (A) Schematic illustration of a custom-made 
piezoelectric test station; (B) electromechanical conversion in terms of applied force vs. output voltage of films normalized with 10-μm 
thickness; and (C) changes in output voltage over 5000 cycles using a repeated force of 0.2 N.

was selected as a substrate with greater thickness than the AlN film and similar elastic modulus to AlN, 
while maintaining sufficient mechanical flexibility, to have a neutral plane located in the Cu foil during the 
bending. Therefore, a single type of piezoelectric polarization change (positive or negative) is generated 
depending on the nature of the bending process. A bend-up condition [Figure 4A] generates negative and 
positive charges at the top and bottom electrodes, respectively. A bend-down condition [Figure 4B] induces 
opposite charges, that is, positive (top) and negative (bottom) charges. When the sensor is released from the 
bend-up or the bend-down conditions, reverse potential is generated across the top and bottom electrodes.

Figure 5A shows a custom-made piezoelectric test station consisting of a stepping motor, controller, 
micrometer drive, sample stage, and software to compare the electromechanical conversion performances of 
various piezoelectric films. The sensor on the sample stage is installed with a bottom electrode facing toward 
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Figure 6. Piezoelectric pressure sensor for muscle motion monitoring. (A) Photographs of the sensor positions such as (i) diaphragm; 
(ii) jaw; and (iii) neck. The output voltages from (B) normal and rapid respiration, (C) chewing; and (D) swallowing. The output 
voltages from vocal stimulus (E) “Hi” and (F) “Houston”. The arrows indicate the second syllable.

the micrometer drive to simulate the sensor attached to the skin. When the micrometer drive moves 
forward, the sensor is further bent down. Thus, the sensor generates positive potentials, as shown in 
Figure 5B, which are matched with the mechanism described in Figure 4. The output voltages of various 
films are compared in Figure 5B. The output voltages are normalized with a fixed thickness (e.g., 10 μm). 
The PBA film generates a higher voltage than the PVDF+BTO-NP and PVDF-only films. At 0.2 N, the 
PVDF, BTO-NP+PVDF, and PBA films exhibit 0.247, 0.639, and 1.28 V, respectively. In addition, a linear 
relationship in output vs. force shows good linearity in the sensitivity. The sensitivity of PBA is 5.713 V/N, 
which is nearly ten times higher than that of commercial PVDF films. The durability of the PBA sensor 
using a repeated force of 0.2 N over 5000 cycles is confirmed by no sign of degradation in the output signals 
in Figure 5C.

Sensing human activities and motions
The results of a series of experiments are shown to demonstrate the performance of the sensor for practical 
applications of human-motion monitoring. The response time is 4 to 6 ms in the overall condition, which is 
influenced by noise and limited by the transient data collection frequency. The PBA-PPS was attached to the 
chest, cheek, and throat to detect signals from the respiration, masticatory, and esophageal muscular 
movements, respectively, as shown in Figure 6A with the locations of the sensor. Figure 6B shows the 
output voltage from breathing. When the subject inhales, the sensor is further bent down by the 
deformation of the chest for expansion, then released during exhalation by contraction. The peak voltages 
are ~40 mV for both normal and rapid respiration. Then, chewing activity from cheek positions while the 
subject chewed gum every 0.5 seconds during the test was monitored. The sensor signals from the 
masticatory movement are shown in Figure 6C. Similar to the output from the breathing studies, a positive 
potential was first generated, followed by negative potential from the expansion and contraction of the 
cheek. The average peak voltages were ~35.7 and ~35.3 mV for the right and left sides, respectively, which 
can be utilized for a simple diagnosis of facial asymmetry. The human subject in this example showed only 
~0.4 mV difference in average output value from the right and left cheeks. Both the output voltages from the 
right and left cheeks showed peak and flat regions, which might arise from hyolaryngeal muscle 
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Figure 7. Sensing of eye blinking and eyeball movement. (A) Image of the sensor attached to the temple area. Voltage output 
characteristics of (B) eye blinking and (C) lateral eyeball movement.

movement[34,35]. As shown in Figure 6D, the sensor was also mounted on the throat to monitor the changes 
during water swallowing. The generated peak voltage value was ~94.3 mV with an average of ~88.1 mV, 
which is two times higher than those from breathing and chewing. In this case, the negative output was first 
generated because the sensor was bent-up and then released on the throat due to swallowing. The sensitivity 
of vocal stimulus was also investigated by fixing the sensor on a subject’s throat [Figure 6Aiii]. Two output 
signals corresponding to “Hi” and “Houston” are shown in Figure 6E and F. In Figure 6E, “Hi” has only one 
syllable; thus, it showed a single positive and negative peak. In contrast, “Houston” with two syllables 
generated a satellite peak along the main peak, marked as arrows in Figure 6F. Here, a clear difference in the 
output voltage curves was observed due to different pressures and movements of the vocal cords during 
speech.

We further investigated the sensor for subtle deflections by muscle movements such as eye blinking and 
eyeball movement[10,16,17,36]. Since abnormal eye movements might be associated with several brain-related 
abnormalities, the detection of muscle movements near the eyes is important for the early diagnosis of the 
abnormalities. According to our previous study[36], the temple area is the ideal location to attach the sensor, 
as shown in Figure 7A. The output voltages with blinking and lateral eyeball motion as a function of 
measuring time are shown in Figure 7B and C, respectively. The sensor on the temple was bent down 
during eye blinking and transverse eyeball movement[36], giving rise to positive and negative potentials. The 
sensor was able to detect tiny deflections of the skin by eye movements, which is also useful in biomedical 
applications such as pulse monitoring. However, the generated voltage values are small (1 to 3 μV). The 
signal-to-noise ratio (SNR) is ~30 dB for the eye blinking, which might be too low for stable wireless 
communication.

Humans have several joints in their bodies that are crucial for daily activity. Bending characteristics of 
joints, including wrist, finger, and elbow, were examined and are shown in Figure 8. The PBA sensor was 
attached to the wrist for the detection of two types of distinguished motions (wrist-up and wrist-down), as 
shown in Figure 8A and B, respectively. When the wrist moved upward, the PBA sensor was bent up, and 
the corresponding peak voltage was negative 55 mV. Conversely, for downward bending, the sensor 
generated a peak output of positive 24.1 mV. The difference in peak output values from wrist-up and wrist-
down motions is related to the difference in bending degree[37]. For other applications of large joint 
monitoring, elbow bending and releasing motions were investigated with the attachment of the sensor on 
the outer elbow. When the elbow was bent and released, electrical signals with positive and negative values 
were generated. Figure 8C demonstrates higher voltage values (≈ 252 mV) from the elbow joint due to the 
enhancement of stress and strain. Also, the PBA sensor was attached to the finger knuckle for the detection 
of small joint changes with various bending degrees. The generated voltage was proportional to the degree 
of bending, shown in Figure 8D, with the maximum voltages of 39.1, 55.2, and 74.7 mV for 30°, 60°, and 90°, 
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Figure 8. The piezoelectric PBA sensor characteristics from several joint motions. Voltage outputs of different types of wrist 
movements: (A) upward and (B) downward bending. Monitoring the bending amplitude of joints with the help of a Band-Aid; (C) 
elbow; and (D) finger with various bending angles. Inset photos represent the position where the PBA sensor was attached. PBA: 
PVDF+BTO-NP/AlN.

Figure 9. The piezoelectric performance of pressure sensing. (A) Illustration of practices and photographs of PBA sensor located in the 
insole of a shoe. The voltage output of pressure arising from (B) squatting; (C) lunging; and (D) walking. PBA: PVDF+BTO-NP/AlN.

respectively. These results demonstrate that different bending degrees can be distinguished by the output 
value. Also, each joint part generated different levels of voltages according to the stress and strain level. 
Furthermore, the movements of these limb parts can be useful for developing intelligent robot sensing and 
rehabilitation monitoring[38,39].
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The piezoelectric sensors can be further utilized for energy harvesters. Among human motions, weight-
based activities such as squatting, lunging, and walking [as shown in Figure 9A top] can apply high pressure 
and force, which can generate high potential values. The PBA sensor was installed into the insole of a shoe [
Figure 9A bottom] worn by a subject having 70 kg of weight. As shown in Figure 9B-D, the peak voltages 
were 3.33, 2.81, and 7.37 V for squatting, lunging, and walking, respectively, which are relatively high output 
values. In this study, while we apply a single sensor to demonstrate the feasibility, the output values can be 
further enhanced for real applications of energy harvesters when the PBA sensor is comprised of arrays of 
multiple sensors.

CONCLUSIONS
In this study, we introduced a PBA sensor composed of BTO-NPs embedded in PVDF-coated AlN thin 
films. AlN was deposited on flexible Cu foil by RF-magnetron sputtering, and BTO-NP-dispersed PVDF 
was prepared by solution casting and spin-coating methods. The prepared sensor was analyzed by Raman, 
FTIR, and XRD. The physicochemical analyses showed piezoelectric phases of PVDF after heat-treatment 
and drying steps, which improved the piezoelectric properties of the PBA sensors. Basic piezoelectric 
performance was tested using a custom-made test station, and detailed parameters were controlled by 
computer software. With increasing applied force, the output voltage of the PBA sensor increased with a 
sensitivity of 5.713 V/N, which is the highest value among the compared materials. The durability of the 
PBA sensor was also confirmed up to 6000 cycles. We tested our sensor using various types of practical 
piezoelectric environments such as muscle movements, including vocal cord, eye-related motions, joint 
bending, and high pressure-bearing areas. The results indicate that several physiological signs generated 
distinguished outputs according to the range of bending forces from tiny deflections to high forces. The 
PBA sensors showed enhanced piezoelectric performance and sensitivity by applying PVDF+BTO-NP on 
AlN, which enables the PBA sensor competitive for bio-medical applications with wearable properties and 
energy-harvesting capabilities.
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