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Abstract: Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic
iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been
extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety
of applications in biomedicine, most practical applications require IONP-based platforms that can
perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs
with different classes of organic and inorganic materials can produce multifunctional nanoplatforms
that can perform several functions simultaneously, allowing their application in a broad spectrum of
biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms
based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers,
and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight
the recent technological advances achieved from such integrated multifunctional platforms and their
potential use in biomedical applications, including dual-mode imaging for biomolecule detection,
targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.

Keywords: magnetic nanoparticles; Fe3O4; biomedical applications; surface functionalization; or-
ganic dyes; biomolecules; stimuli-responsive polymers; quantum dots; metal nanoparticles; magnetic
resonance imaging; fluorescence imaging; photodynamic therapy; drug delivery; diagnosis; bacterial
detection; cancer treatment; antibacterial; tumor targeting; photothermal ablation

1. Introduction

Nanoparticles (NPs) have attracted substantial scientific attention because they offer
novel structural, optical, and electronic properties that are distinct from those of individ-
ual molecules or bulk materials. Currently, scientists can design and prepare exotic NPs
with controllable sizes, morphologies, and compositions for various applications [1–5].
Among the various types of NPs, magnetic NPs are a promising nanoscale tool in the
current biomedical field [5]. For example, the capacity of NPs to generate magnetic fields
and influence their local environment has led to their use as contrast agents in magnetic
resonance imaging (MRI) techniques [6,7]. Furthermore, their capacity to be manipulated
via an external magnetic field makes them attractive candidates for use as drug-delivery
vehicles and in cell separation/purification and cell tracking [8,9]. Additionally, their ca-
pacity to produce heat when subjected to an oscillating magnetic field makes them suitable
as antitumor therapeutic agents [7,9]. Due to their good magnetic properties, excellent
biocompatibility, and low cast, magnetic iron oxide nanoparticles (IONPs) are the most com-
monly used magnetic nanomaterials and have been extensively explored in a wide range of
fields, including biomedical, sensing, environmental science, energy storage, and electronic
devices [5,6,8,10]. Although magnetic IONPs can be used for a variety of applications

Materials 2022, 15, 503. https://doi.org/10.3390/ma15020503 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15020503
https://doi.org/10.3390/ma15020503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8536-2737
https://orcid.org/0000-0001-5710-1601
https://orcid.org/0000-0002-2368-2468
https://orcid.org/0000-0003-4400-468X
https://orcid.org/0000-0001-9584-8861
https://doi.org/10.3390/ma15020503
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15020503?type=check_update&version=1


Materials 2022, 15, 503 2 of 47

in biomedicine, most practical applications require IONP platforms that perform several
tasks in parallel. This parallel activity can be achieved by appropriate engineering and
integration of magnetic IONPs with suitable conjugates, rendering them practical for use in
a broad spectrum of biomedical fields. Moreover, attaching appropriate organic molecules
(e.g., dyes, polymers, proteins, and/or antibodies, or other nanomaterials, such as quantum
dots and noble metal NPs) to magnetic IONPs allows new biological applications, including
protein purification and biosensing [1,8]. In this review, we focus on the progress in current
composite NPs based on the integration of magnetic IONPs with different classes of organic
and inorganic materials. The integrated materials include organic dyes, biomolecules
(e.g., lipids, DNAs, and folic acid), quantum dots, noble metal NPs (including Au and Ag
NPs), and stimuli-responsive polymers. We will give a brief overview and highlight the
recent technological advances achieved in these integrated multifunctional platforms and
their potential use in biomedical applications, as shown in Figure 1.
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Figure 1. Multifunctional iron oxide NPs integrated with different classes of organic and inorganic
materials for biomedical applications.

2. Integration of Organic Dyes and Magnetic Iron Oxide Nanoparticles

Magnetic NPs are commonly used as contrast agents in magnetic resonance imaging
(MRI) [5,6,9], which provides physiological or biochemical information on what is happen-
ing inside the body with high spatial resolution and unlimited imaging depth. Organic
dyes, such as fluoresceins, rhodamines, and cyanine [11,12], are a class of contrast agents
that are commonly exploited in fluorescence imaging. Fluorescence imaging (FI) techniques
provide excellent resolution, high sensitivity, and fast scan times; however, they can suffer
from a shallow tissue penetration depth [13,14]. Given these considerations, combined
MRI and FI imaging systems have been developed, which offer the combined benefits of
these two techniques [15–31]. Many researchers have extensively studied the integration
of magnetic NPs and organic dyes into single platforms and have demonstrated their use
as bimodal imaging agents for both in vitro and in vivo imaging [15,18–21,24–31] and in
multifunctional platforms that perform several tasks in parallel (e.g., dual-mode imaging
and photodynamic therapy or drug delivery) [16,17,22,23]. Several representative studies
on the integration of organic dyes and magnetic IONPs for biomedical applications covered
in this section are compiled in Table 1, and SPIONs corresponds to superparamagnetic iron
oxide nanoparticles.
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Table 1. Organic dye-integrated magnetic nanoparticles for biomedical applications.

NP Conjugate Morphology Final Size
(nm) Applications Ref.

IONPs@
DPSE-PEG

DiO, or DiI, or
DiD, or DiR Spherical 24–46 Multimodal MRI and FI [15]

SPIONs Ce6 Spherical 92
Theranostic agent for

dual-mode imaging and
photodynamic therapy

[16]

SPIONs@
DSPE-PEG ICG Spherical

(core-shell) 23
Tumor MR and fluorescence
imaging and drug delivery

for DOX
[17]

Fe3O4@SiO2-
CMCS Cy5 Spherical

(core-shell) 51 Bioimaging [18]

Fe3O4@poly(HFMA-
co-VBK)-g-PEG VBK Spherical

(core-shell) 146 Magnetic resonance and
optical imaging [19]

GO-PAMAM-
Fe3O4

Cy5 Irregular - Cellular imaging [20]

Fe3O4-P(PEGMA) FITC Spherical 36 Bioimaging [21]

Fe3O4 Ce6 Spherical 15–25

Dual-mode NIR fluorescence
imaging and MRI of gastric
cancer and photodynamic

therapy (PDT)

[22]

mSiO2-Fe3O4-PEG RITC or FITC Spherical 93 Enhanced MRI, FI, and drug
delivery for DOX [23]

Fe3O4@mSiO2-
PEG FITC or RITC Spherical

(core-shell) 45–105 MRI and FI [24]

IONPs@PSSS-PAH RhB - - Bioimaging [25]

γ-Fe2O3@CS FITC - 14 Cellular imaging [26]

SPIONs@poly(TMSMA-
r-PEGMA-r-NAS) Cy5.5 Core-shell ~26 Dual-mode MRI and

optical imaging [27]

SPIONs@SiO2 FITC Spherical
(core-shell) 50 MRI for human stem

cell labeling [28]

γ-Fe2O3

RhB or fluorescein
diacetate

maleimide
~ ~30 Cellular imaging [29]

IONPs-cross-
linked dextran Cy5.5 ~ ~ Preoperative MRI and

intraoperative optical probe [30]

γ-Fe2O3 CR or RITC Spherical 14–15
Multimodal imaging agents

for amyloid-β fibril detection
and removal

[31]

Abbreviations: IONPs: iron oxide nanoparticles; SPIONs: superparamagnetic iron oxide nanoparticles; DPSE-
PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]; MRI: magnetic res-
onance imaging; FI: fluorescence imaging; Ce6: chlorin e6; ICG: indocyanine green; DOX: doxorubicin;
Cy5: squarylium indocyanine dye; HFMA: 2,2,3,4,4,4-hexafluorobutyl methacrylate; VBK: 9-(4-vinylbenzyl)-
9H-carbazole; PEG: poly(ethylene glycol); P(PEGMA): poly(poly(ethyleneglycol)monomethacrylate); FITC: flu-
orescein isothiocyanate; NIR: near-infrared; PDT: photodynamic therapy; RITC: rhodamine B isothiocyanate;
mSiO2: mesoporous silica; PSSS: polysodium-4-styrene sulfonate; PAH: poly(allylamine hydrochloride); RhB: rho-
damine B; Cy5.5: cyanine-5.5; TMSMA: 3-(trimethoxysilyl)propyl methacrylate; NAS: N-acryloxysuccinimide;
CR: Congo red.

Recently, Tsourkas and coworkers combined superparamagnetic SPIONs and chlorin
e6 (Ce6), a second-generation and clinically used photosensitizer, to develop a theranostic
agent for dual-mode imaging and photodynamic therapy [16]. Photodynamic therapy
(PDT) is a relatively new modality based on a minimally invasive procedure for spatiotem-
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porally selective treatments for cancer and other malignant diseases [32,33]. PDT uses
light, chemical photosensitizers (PSs), and molecular oxygen or other adjacent substrates
to generate cytotoxic reactive oxygen species (ROS) that eradicate target tumor cells. As
shown in Figure 2a, Ce6-coated SPION nanoclusters (Ce6-SCs) were synthesized by mixing
Ce6 and SPIONs in an oil-in-water emulsion [16]. Due to the presence of four nitrogen
atoms and three carboxylic acid groups in each Ce6 molecule, Ce6-SCs are highly soluble
and stable in water and can be excited with an ~670 nm laser (Figure 2b). Moreover, Ce6-
SCs also showed good biocompatibility, high solubility, and stability under physiological
conditions. Importantly, tumors can be detected and visualized by both MRI and FI due to
enhanced permeability and retention of Ce6-SCs in tumors compared to free Ce6, as shown
in Figure 3. Figure 3 also shows that Ce6-SCs significantly slowed tumor growth in mice
due to high singlet oxygen generation during PDT treatments [16].
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Figure 3. (a) In vivo magnetic resonance images (MRI) obtained pre- and 24 h post-intravenous
injection of Ce6-SCs into mice bearing 4T1 flank tumors, denoted by yellow circles. (b) Quantification
of the preinjection vs. postinjection signal-to-background ratio (SBR) measured using the candidate
tumor and the paraspinous musculature (green star) background. (c) Fluorescence images (FIs) of
mice acquired 24 h following injection of 2.5 mg/kg Ce6 based on the Ce6 weight of Ce6-SCs (left)
and free Ce6 (right). (d) Signal-to-background ratio (SBR) of mice injected with Ce-SCs and free
Ce6 at 640 and 720 nm excitation and emission, respectively. Reproduced with permission from
reference [16].
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In 2019, a multifunctional nanotheranostic agent, SPIO@DSPE-PEG/DOX/ICG nanopar-
ticles, was developed by Dai and coworkers, who simultaneously loaded the traditional
chemotherapeutic doxorubicin (DOX) and the organic dye indocyanine green (ICG) into
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]-
coated SPIONs [17]. The hydrophobic SPIONs were coated with DSPE-PEG 2000 to form
a phospholipid shell layer surrounding the SPION core, with the DSPE moieties and hy-
drophilic outside surfaces derived from the PEG moieties of DSPE-PEG 200. While the lipid
shell layer enabled high loading of hydrophobic ICG and DOX, the hydrophilic outside
surface ensured high water solubility, excellent biocompatibility, and increased cellular
uptake of the NPs [17]. Both in vivo near-infrared (NIR) fluorescence imaging and MRI
showed slow and sustained release of DOX from the SPIO@DSPE-PEG/DOX/ICG NPs
within tumor cells, resulting in high antitumor efficacy against C6 glioma in rats, without
obvious side effects. Figure 4 illustrates the preparation and utilization of SPIO@DSPE-
PEG/DOX/ICG NPs in MR/NIR fluorescence dual-modal imaging and chemotherapy of
glioma through intravenous injection.
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Iron oxides and organic dyes can also be integrated into micelle-based nanoparticles for
biomedical applications. Specifically, Yan et al. reported the fabrication of Fe3O4-encapsulated
polymeric micelles via self-assembly of fluorine-containing amphiphilic poly(2,2,3,4,4,4-
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hexafluorobutyl methacrylate-co-9-(4-vinylbenzyl)-9H-carbazole)-g-poly(ethylene glycol)
copolymers and oleic acid-modified Fe3O4 NPs for dual-modality magnetic resonance and
optical imaging [19]. Due to the presence of the magnetic core and fluorescent carbazole
dyes in the polymeric shell, the Fe3O4@poly(HFMA-co-VBK)-g-PEG micelles performed
well as a dual-imaging probe with enhanced contrast and blue fluorescence in the liver
and spleen during in vivo MRI and optical imaging, respectively. The preparation of the
Fe3O4@poly(HFMA-co-VBK)-g-PEG micelles is illustrated in Scheme 1.
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Scheme 1. Synthesis of the magnetic fluorescent polymeric micelles Fe3O4@poly(HFMA-co-VBK)-g-
PEG for magnetic resonance and optical imaging. Reproduced with permission from reference [19].
Copyright 2014 Elsevier.

Photosensitizer-conjugated magnetic NPs with a diameter of ~20 nm were prepared by
Cui and coworkers for simultaneous in vivo gastric cancer magnetofluorescence imaging
and targeted therapy [22]. Fe3O4 NPs were coated with 3-aminopropyltrimethoxysilane
(APTS), followed by conjugation of chlorin e6 (Ce6) via a carbodiimide/N-hydroxysuccinimide
(EDC/NHS) reaction to form Ce6-MNPs (Scheme 2). The as-synthesized Ce6-MNPs were
highly soluble in water, noncytotoxic, and biocompatible. Importantly, while the magnetic
core allowed MRI, the Ce6 dye offered near-infrared (NIR) FI and photodynamic therapy
(PDT) functions. Consequently, Ce6-MNPs were effective for simultaneous in vivo targeted
photodynamic therapy, as well as dual-mode MRI and NIR FI of nude mice bearing gastric
cancer [22], as shown in Figure 5.

Materials 2022, 15, x FOR PEER REVIEW 7 of 50 
 

 

 
Scheme 1. Synthesis of the magnetic fluorescent polymeric micelles Fe3O4@poly(HFMA-co-VBK)-g-
PEG for magnetic resonance and optical imaging. Reproduced with permission from reference [19]. 
Copyright 2014 Elsevier. 

Photosensitizer-conjugated magnetic NPs with a diameter of ~ 20 nm were prepared 
by Cui and coworkers for simultaneous in vivo gastric cancer magnetofluorescence imag-
ing and targeted therapy [22]. Fe3O4 NPs were coated with 3-aminopropyltrimethox-
ysilane (APTS), followed by conjugation of chlorin e6 (Ce6) via a carbodiimide/N-hy-
droxysuccinimide (EDC/NHS) reaction to form Ce6-MNPs (Scheme 2). The as-synthe-
sized Ce6-MNPs were highly soluble in water, noncytotoxic, and biocompatible. Im-
portantly, while the magnetic core allowed MRI, the Ce6 dye offered near-infrared (NIR) 
FI and photodynamic therapy (PDT) functions. Consequently, Ce6-MNPs were effective 
for simultaneous in vivo targeted photodynamic therapy, as well as dual-mode MRI and 
NIR FI of nude mice bearing gastric cancer [22], as shown in Figure 5. 

 
Scheme 2. Illustration of the preparation of Ce6-MNPs for simultaneous targeted photodynamic 
therapy (PDT) and in vivo dual-mode NIR fluorescence imaging and MRI. Reproduced with per-
mission from reference [22]. Copyright 2011 Elsevier. 

Scheme 2. Illustration of the preparation of Ce6-MNPs for simultaneous targeted photodynamic ther-
apy (PDT) and in vivo dual-mode NIR fluorescence imaging and MRI. Reproduced with permission
from reference [22]. Copyright 2011 Elsevier.



Materials 2022, 15, 503 7 of 47Materials 2022, 15, x FOR PEER REVIEW 8 of 50 
 

 

 
Figure 5. (a) In vivo NIR fluorescence images, (b) in vivo MRI images, and (c) photodynamic efficacy 
after intravenous injection of Ce6-MNPs in nude mice. Abbreviations: M&L, magnetic targeting and 
irradiation; D&L, Ce6-MNPs administered and irradiated; D&M, Ce6-MNPs administered and 
magnetic targeting; and D&M&L, Ce6-MNPs administered, magnetic targeting, and irradiated. Re-
produced with permission from reference [22]. Copyright 2011 Elsevier. 

In addition to polymer-based structures, silica-based [28] and silica/polymer-based 
NPs [23,24] have been integrated with organic dyes and magnetic iron oxides for biomed-
ical applications. Hyeon and collaborators described the synthesis of uniform mesoporous 
dye-doped silica NPs decorated with multiple Fe3O4 nanocrystals for use as contract 
agents for simultaneous enhanced MRI, FI, and delivery of the anticancer drug doxorubi-
cin (DOX) [23]. Specifically, the surface of the rhodamine B (RITC)- or fluorescein isothio-
cyanate (FITC)-doped mesoporous silica NPs was functionalized with APS before reac-
tion with 2-bromo-2-methyl propionic acid-coated Fe3O4 NPs, followed by surface modi-
fication with methoxy poly(ethylene glycol) succinimidyl glutarate (mPEG-SG) and meth-
oxy poly(ethylene glycol) amine (mPEG-AM) to form PEG-coated Fe3O4-MSNs. DOX was 
subsequently loaded into the pores of the PEG-coated Fe3O4-MSNs to generate DOX-
loaded PEG-coated Fe3O4-MSNs. Scheme 3 illustrates the synthesis of the DOX-loaded 
PEG-coated Fe3O4-MSNs [23]. 

 

Figure 5. (a) In vivo NIR fluorescence images, (b) in vivo MRI images, and (c) photodynamic efficacy
after intravenous injection of Ce6-MNPs in nude mice. Abbreviations: M&L, magnetic targeting
and irradiation; D&L, Ce6-MNPs administered and irradiated; D&M, Ce6-MNPs administered and
magnetic targeting; and D&M&L, Ce6-MNPs administered, magnetic targeting, and irradiated.
Reproduced with permission from reference [22]. Copyright 2011 Elsevier.

In addition to polymer-based structures, silica-based [28] and silica/polymer-based
NPs [23,24] have been integrated with organic dyes and magnetic iron oxides for biomedical
applications. Hyeon and collaborators described the synthesis of uniform mesoporous dye-
doped silica NPs decorated with multiple Fe3O4 nanocrystals for use as contract agents for
simultaneous enhanced MRI, FI, and delivery of the anticancer drug doxorubicin (DOX) [23].
Specifically, the surface of the rhodamine B (RITC)- or fluorescein isothiocyanate (FITC)-
doped mesoporous silica NPs was functionalized with APS before reaction with 2-bromo-2-
methyl propionic acid-coated Fe3O4 NPs, followed by surface modification with methoxy
poly(ethylene glycol) succinimidyl glutarate (mPEG-SG) and methoxy poly(ethylene glycol)
amine (mPEG-AM) to form PEG-coated Fe3O4-MSNs. DOX was subsequently loaded into
the pores of the PEG-coated Fe3O4-MSNs to generate DOX-loaded PEG-coated Fe3O4-
MSNs. Scheme 3 illustrates the synthesis of the DOX-loaded PEG-coated Fe3O4-MSNs [23].
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The synthesized dye-doped PEG-coated Fe3O4-MSNs exhibited high stability in aque-
ous solutions and did not show detectable effects on the viability and proliferation of cells.
The composite NPs accumulated at the tumor site after intravenous injection. Importantly,
the presence of a multitude of magnetic Fe3O4 NPs on silica surfaces resulted in strongly
enhanced MR signals, and the integrated dye molecules in the silica frameworks allowed FI
functionality of the dye-doped PEG-coated Fe3O4-MSNs in vivo [23], as shown in Figure 6.
Moreover, DOX was successfully delivered by the platform to the tumor site and induced
efficient cancer cell death [23].

The highlighted examples and composite NP systems summarized in Table 1 demon-
strate that the integration of iron oxide NPs and organic dyes offers important advantages.
Specifically, these platforms can provide better diagnostic information with a more comple-
mentary dataset obtained from dual-diagnostic MRI/FI modalities than the corresponding
isolated imaging techniques. While the magnetic component can facilitate localization in
tumor tissues for MRI in the preoperative stage, the resection of tumors during surgery can
be guided by fluorescence imaging. Thus, the combination of magnetic iron oxide NPs and
organic dyes can improve the accuracy of diagnosis and reduce damage to healthy tissue,
the time needed for testing, the expense, and the uncertainty associated with multiple
agents. Moreover, simultaneous multifunctional platforms that perform several tasks in
parallel, such as dual-mode imaging and photodynamic therapy or drug delivery, can be
achieved by integration of numerous organic dyes and iron-oxide-based MNPs.
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Figure 6. (a) In vivo MR images (upper) and color mapped images (lower) of the tumor site (indicated
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Reproduced with permission from reference [23]. Copyright 2010 American Chemical Society.

3. Integration of Biomolecules and Magnetic Iron Oxide Nanoparticles

High biocompatibility, low cytotoxicity, and low risk of immune rejection make
biomolecules good candidates for combination with magnetic iron oxide nanoparticles
(IONPs) to develop highly targeted platforms for diagnosis, therapy, and theranostics for
many notorious diseases. Depending on targeting applications, biomolecules (such as ap-
tamers, antibodies, and even stem cells) can be integrated with magnetic IONPs to achieve
desired results. Table 2 summarizes important recent studies on biomolecule-functionalized
magnetic iron oxide nanoparticles for biomedical applications covered in this section.
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Table 2. Biomolecule-functionalized magnetic iron oxide nanoparticles for biomedical applications.

NP Conjugate Morphology Final Size
(nm) Applications Ref.

IONPs GRAA33 aptamer Spherical 68 ± 4 Remove prefibrillar
amyloid aggregates [34]

IONPs Genomic DNA Irregular NA Capture DOX, 98% [35]

SPIONs AS-14, AS-42 Irregular ~20 Cancer treatment [36]

IONPs DNA Spherical 50 ± 5 Detect and regulate mRNA, 99% [37]

IONPs ssDNA Spherical 200–400 AFP capture for pregnancy
test, 87% [38]

γ-Fe2O3 DNA Irregular NA Thrombin detection,
limit of 97 pM [39]

IONPs Anti-K2 antibody Spheroidal 17–25 JWH-073 detection [40]

SPIONs mAb NA NA Cancer drug delivery [41]

IONPs Anti-ferritin antibody Spherical ~50 Alzheimer’s disease
early diagnosis [42]

IONPs Anti-fFN antibody Spherical 37–63 Preterm birth diagnosis [43]

USPIO CKAAKN peptide Spheroidal ~60 Enhanced MRI contrast agent [44]

IONPs Biotin, folic acid Spherical ~70 Anticancer drug carrier [45]

IONPs Lipidoid Spherical 65 ± 5 MRI-trackable immunotherapy [46]

IONPs@Al2O3 Peptide Irregular Staphylococcus aureus
pathogen screening [47]

Abbreviations: IONP: iron oxide nanoparticle; SPIONs: superparamagnetic iron oxide nanoparticles; mAb:
anti-Met/HGFR-positive; NA: not available; USPIO: ultrasmall superparamagnetic iron oxide; anti-fFN antibody:
anti-fibronectin antibody; DOX: doxorubicin; CTC: circulating tumor cell; EpCAM: epithelial cell adhesion
molecule; MRI: magnetic resonance imaging.

In recent years, aptamer-enabled technologies have attracted significant attention in
the research community as a sensitive, reliable, and convenient method for biomarker detec-
tion in various critical human diseases [48]. Combining aptamers and IONPs offers a new
set of approaches to develop more effective medical technologies for both diagnostic and
therapeutic applications. Taheri and coworkers recently demonstrated that silica-coated
IONPs conjugated with DNA aptamers (Ap-SiMNPs) can efficiently remove toxic serum
albumin prefibrillar amyloid aggregates (AA20) as a potential method to overcome compli-
cations related to diabetes [34]. Fe3O4 magnetic nanoparticles (MNPs) were synthesized
using the coprecipitation method, coated with silica, and then conjugated with GRA33
DNA aptamers, as shown in Scheme 4.

The selective binding of AA20 to the GRA33 DNA aptamer (Figure 7a) was confirmed
by an electrophoretic mobility shift assay (EMSA), as shown in Figure 7b. Specifically,
GRA33 mobility was strongly retarded after incubation with AA20 compared to GRA33
without AA20. Surface plasmon resonance (SPR) assay results (Figure 7c) also showed the
binding of GRA33 to AA20 at various aptamer concentrations. The inset in Figure 7c plots
the equilibrium responses used to determine the dissociation constant KD = 3.4 × 10−9 M,
which represents a high-affinity interaction between GRA33 and AA20. This work provides
a promising approach to solve amyloidosis-related complications in diabetic patients and
other amyloid disorders.

Conventional chemotherapeutic agents used in various medical procedures can cause
side effects in patients during and after treatment [49]. Therefore, effective methods to re-
move excess chemicals from the circulatory system are badly needed to make chemotherapy
safer for medical treatment. In 2018, Grubbs and coworkers showed the capture of common
chemotherapy agents, including cisplatin, epirubicin (EPI), and doxorubicin (DOX), from bi-
ological solutions using genomic DNA-conjugated IONPs [35]. Up to 98% capture of DOX,
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a commonly used cancer treatment agent, was achieved in human serum within 10 min
(Figure 8a). The DNA-conjugated IONPs also captured 20% cisplatin and 68% EPI within
30 min and 25 min, respectively. The authors also demonstrated that their DNA-conjugated
nanoparticles could rescue cultured cardiac myoblasts from lethal levels of DOX more
efficiently than Dowex, which has previously been shown to reduce DOX levels in vivo
(Figure 8b). These results indicate the promising applicability of genomic DNA-conjugated
IONPs for drug capture applications to reduce the side effects of chemotherapies.
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(b) rescue of cultured cells from DOX toxicity by DNA-conjugated IONPs. Adapted with permission
from reference [35].

The high toxicity and low efficiency of traditional cancer therapies have been prob-
lematic, and nanotechnologies can help with novel solutions. Recently, Kolovskaya et al.
reported a magnetodynamic therapy to selectively eliminate tumor cells in vivo [36]. In
this work, magnetite nanoparticles functionalized with fibronectin (AS-14), heat shock
cognate 71 kDa protein (AS-42) aptamers, and arabinogalactan (AG) polysaccharide were
applied for selective cancer cell targeting and cellular internalization. Specifically, the
IONPs functionalized with AS aptamers and fragmented AG polysaccharide (AS-FrFeAG)
were tested in vivo as a contrast agent for magnetic resonance imaging (MRI) of Ehrlich
carcinoma in mice. For tumors in the mouse leg, AS-FrFeAG nanoparticles provided a
contrast similar to that of the Omniscan contrast agent (Figure 9a(1–3),b(1–3)). However,
the AS-FrFeAG nanoparticles penetrated the blood–brain barrier to reach the brain tumor
and yielded a greater contrast than OmniScan (Figure 9c(2,3)), suggesting the potential use
of AS-FrFeAG as a contrast agent for brain tumors.
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Figure 9. AS-FrFeAG functional nanoparticles used as a contrast agent for magnetic resonance
imaging of tumors. A mouse with a tumor transplanted in the right leg (a,b) or brain (c) imaged
without a contrast agent (1), with OmniScan as a contrast agent (2), or with AS-FrFeAG as a contrast
agent (3). Reproduced from reference [36].
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AS-FrFeAG nanoparticles were also evaluated for their effect on tumorous cells in
the presence of a low-frequency (50 Hz) alternating magnetic field (LFAMF). Compared to
untreated tumors (Figure 10a), tumors treated with aptamers alone (Figure 10b), and tumors
treated with FrFeAG/LFAMF but without the AS aptamer to target the nanoparticles to the
cancer cell (Figure 10c,d), an enhanced reduction in the bulk of the tumor cells was observed
for tumors treated with AS-FrFeAG nanoparticles (Figure 10e,f). This work demonstrates
the potential of aptamer-functionalized magnetite nanoparticles for noninvasive targeted
cancer therapy and contrast enhancement in MRI.
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Figure 10. Histological features of the treated tumors: (a) nontreated tumor; (b) tumor treated with
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Moreover, with proper aptamer conjugates, magnetic nanoparticles have also been
used to enhance the performance of various biomedical applications. Katz and coworkers
reported the ability of DNA-modified magnetite nanoparticles to selectively detect and
induce downregulation of up to 99% of target mRNA in cultured MCF-7 cancer cells [37]. In
a separate work, Fe3O4@SiO2 functionalized with a specific ssDNA aptamer showed highly
selective targeting, with a recovery of 87% toward alpha fetoprotein (AFP), a pregnancy
biomarker [38]. Zeng and coworkers developed a one-step method to detect thrombin
using DNA aptamer-conjugated magnetic nanospheres, with a detection limit of 97 pM [39].

In addition to aptamers, antibodies are another type of biomolecule that is regularly
used for many biomedical purposes. Combining various antibodies with magnetic nanopar-
ticles in an appropriate manner can yield a significantly good performance in diagnostics,
therapeutics, and theranostics [50]. In a recent report, Timur and coworkers described a
biosensor for JWH-073 cannabinoid detection using anti-K2 antibody-immobilized iron
oxide magnetic nanoparticles (MNP-K2), as outlined in Figure 11 [40].
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Figure 11. (a) Conjugation of MNPs with anti-K2 antibody. (b) Capture of MNP-K2 on the screen-
printed electrode (SPE) of the sensors via magnetic force. (c) Reduction of the electrical current by
the presence of JWH-073. Adapted with permission from reference [40]. Copyright 2020 American
Chemical Society.

Testing of the sensing device showed a linear relationship between the response signal
and the concentration of JWH-073 used in the test run, as shown in Figure 12a. The high
linearity of the signal vs. concentration relationship enables reliable and reproducible de-
tection results, which are important in sensing applications. Moreover, a strong selectivity
for JWH-073 by the MNP-K2 sensor was also observed in the presence of possible inter-
ferents, such as benzoylecgonine (BE), methamphetamine (METH), nicotine, and cotinine
(Figure 12b).
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Figure 12. (a) Response signal of the MNP-K2 sensor at various JWH-073 concentrations. (b) Response
of the sensor to certain potential interferents (ns: nonsignificant, *** p < 0.001 vs. SPE/MNP-K2).
Adapted with permission from reference [40]. Copyright 2020 American Chemical Society.

In addition to biomarker detection, antibody-functionalized IONPs have also been
used for tumor-targeted drug delivery, as reported in a study by Oltolina et al. [41]. MNPs
were functionalized with doxorubicin (DOX, a common chemotherapeutic drug, and
with anti-Met/HGFR-positive antibody (mAb), which targets Met/HGFR-positive GTL-16
xenotumor cells. The mAb-functionalized MNPs displayed selective adsorption toward
GTL-16 cells compared to Met/HGFR-negative Huh7 cells, as shown in both optical
(Figure 13a) and fluorescence (Figure 13b) micrographs.

Due to the GTL-16-specific binding of the mAb, the presence of functionalized MNPs
(mAb-DOX-MNPs) significantly reduced the viability of Met/HGFR-positive GTL-16 cells
(Figure 14a), but no similar decrease in cell viability was observed in Met/HGFR-negative
Huh7 cells (Figure 14b). Although the cell viability was roughly similar in the presence
of free DOX and mAb-DOX-MNPs, the targeted interaction provided by the mAb can
reduce the damaging side effects that are typically observed when using DOX in cancer
chemotherapeutic therapies.
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Remarkable results in biomedical applications have also been achieved with various
antibody-functionalized iron oxide magnetic nanoparticle-based materials. Ramos-Gómez
and coworkers demonstrated specific detection of Alzheimer’s disease biomarkers using
a nanoconjugate of IONPs and antiferritin antibodies at a nontoxic level [42]. In another
work, Wong et al. modified the surface of dextran-coated Fe3O4 nanoparticles with anti-
fetal fibronectin (fFN) antibody to detect the biomarker fFN for sensitive and accurate
predictions of the risks of preterm birth [43].

In addition to aptamers and antibodies, various biomolecules have been conjugated
with IONPs in research efforts to develop better biomedical technologies or expand the
capability of current techniques. In an effort to create a better magnetic resonance imaging
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(MRI) contrast agent for pancreatic cancer, Zhu et al. grafted a pancreatic cancer-targeting
CKAAKN peptide-functionalized amphiphilic hyaluroric acid-vitamin E succinate poly-
mer (HA-VES) onto ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, as
illustrated in Figure 15 [44].
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The modified CKAAKN-HA-VES@USPIO nanoparticles preferentially internalized
into CKAAKN-positive BxPC-3 cells and led to a decrease in MRI signal intensity compared
with CKAAKN-negative HPDE6-C7 cells (Figure 16a). As shown in the relative intensity
chart in Figure 16b, CKAAKN-HA-VES@USPIO nanoparticles were able to clearly distin-
guish between BxPC-3 and HPDE6-C7 cells, which led to an enhanced imaging contrast.
The work also studied the cytotoxicity of the modified nanoparticles, which resulted in a
cell survival rate of over 80% for both BxPC-3 and HPDE6C7 cells after 48 h of incubation
with the CKAAKN-HA-VES@USPIO nanoparticles. These results suggest that CKAAKN-
HA-VES@USPIO nanoparticles have the potential as an enhanced MRI contrast agent with
high specificity and low toxicity for pancreatic cancer diagnosis.
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In another report, Ilyas, Mathur, and coworkers grafted biotin (BT) and folic acid
(FA) onto Fe3O4 magnetic nanoparticles for potential use as biocompatible carriers for
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anticancer drug delivery or targeting treatment utilizing hypothermal effects from the
Fe3O4 core [45]. The structure combined the targeting abilities of BT and FA with IONPs
into a single platform that can molecularly recognize and bind to target cancer cells, as
illustrated in Figure 17. Due to molecular identification and internalization by the cell
membrane, the modified nanoparticles can enter tumor cells more easily during diagnosis
or treatment processes.
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Flow cytometry measurements were carried out to evaluate the specific uptake of the
modified nanoparticles (FA-Fe3O4-Biotin) in comparison with the unmodified magnetic
nanoparticles (dopa-Fe3O4) in HeLa and E.G7 cancer cells. Figure 18a reveals that signif-
icantly more of the nanoparticles modified with biotin and folic acid than nonmodified
nanoparticles were taken up by both cancer cell lines. The functionalized particles also
showed higher cell uptake with increasing incubation time (Figure 18b) and low cytotoxic-
ity, with 98% cell viability after 48 h, indicating the high biocompatibility of the particles
reported. Separately, iron oxide-lipidoid core–shell nanoparticles were reported by Clauson
et al. for MRI-trackable delivery to lymph nodes in mice and can potentially be used as
image-guided immunotherapy agents [46]. Kuo et al. reported peptide-functionalized
aluminum-oxide-coated IONPs for capture of Staphylococcus aureus, a Gram-positive
pathogenic bacterium that can cause food poisoning or infectious disease [47]. Hence,
various recent works have demonstrated many designs and combinations of various
biomolecules and magnetic iron oxide nanoparticles for advanced biomedical applications.
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4. Integration of Quantum Dots and Magnetic Iron Oxide Nanoparticles

Quantum dots (QDs), such as CdSe, ZnS, and CdS QDs, and carbon dots (CDs) have
been recognized for their unique optical properties. For example, their resistance to pho-
tobleaching and their molar extinction coefficient are greater than those of traditional
organic dyes; thus, they offer long lifetimes and high brightness [51–54]. Importantly, their
emission spectra can be tuned from the visible to NIR regions by controlling their size
and chemical composition [51–54]. These unique properties have led to great interest in
the use of QDs in biomedical applications. To enhance their functionality, QDs are often
incorporated with magnetic NPs to produce composite NPs that exhibit both fluorescence
and magnetism [55–58]. These integrated properties allow the development of suitable plat-
forms, which can be examined in vitro before moving to in vivo tests [58,59]. Table 3 lists
representative studies on QD-integrated magnetic iron oxide nanoparticles for biomedical
applications covered in this section.
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Table 3. Integration of QDs and magnetic iron oxide NPs for biomedical applications.

NP Conjugate Morphology Final Size
(nm) Applications Ref.

Fe3O4@CDs Sphere 100
Dual-modal imaging, near-IR
light-responsive drug carrier,

and photothermal therapy
[60]

Fe3O4/SiO2/graphene-
CdTe QDs/chitosan

nanocomposites
Chitosan Sphere 177 Drug delivery [61]

Fe3O4@SiO2@
CdSe-CdS-ZnS QDs Sphere 75 Potential use in magnetic

field-assisted cell separation [62]

QD–Pt(II)–6G–IONP (diamine)PtCl2
complexes Sphere 38

Potential use in combined
bioimaging systems such as

FMT and MRI
[63]

Fe3O4/graphene–
QDs@gelatin
microspheres

Gelatin Sphere 460 Drug delivery [64]

Abbreviations: CDs: carbon dots; IONP: iron oxide nanoparticle; MRI: magnetic resonance imaging; FMT: fluo-
rescence molecular tomography.

Recently, the Namazi group developed gelatin-coated Fe3O4/graphene QD hybrid
microspheres (Fe3O4/GQDs@GM) for anticancer drug delivery, as shown in Figure 19a [64].
The authors used carbon-based graphene quantum dots (GQDs) due to their excellent
biocompatibility, high crystallinity, and fluorescence properties combined with their high
density of hydroxyl (−OH) and carboxylic (−COOH) groups on the QD surface. Con-
sequently, the combination of Fe3O4 and GQDs provides opportunities for loading of
abundant types of anticancer drugs in suitably designed microspheres. According to
Figure 19b, the synthesized hybrid Fe3O4/GQDs@GMs revealed a higher loading capabil-
ity of the well-known anticancer drug curcumin (CUR) than the pure gelatin microspheres
(GMs). CUR release studies for both materials are presented in Figure 19c, showing that the
release of CUR depended on the pH. The data also showed that the Fe3O4/GQDs@GMs
are better than pure GMs for CUR delivery at both of the studied pH conditions.

Ou et al. reported magnetic Fe3O4/SiO2/graphene–CdTe QDs/chitosan nanocom-
posites (FGQCs) as a promising multifunctional drug delivery system for biological and
medical applications [61]. The CdTe QDs embedded inside the graphene provided the
fluorescence capability for traceable imaging to track and diagnose the effectiveness of
treatments. While the graphene shells showed good drug-loading capability due to their
noncovalent π–π stacking, the SiO2 layers prevented fluorescence quenching by blocking
direct contact of fluorophores with the magnetic iron oxide NPs.

The morphologies of both Fe3O4@SiO2 and FGQCs are presented in Figure 20a,b.
The size of FGQC increased to ~460 nm after coating the ~220 nm Fe3O4@SiO2 NPs with
graphene–CdTe QD shells. Fluorouracil (5-FU) was used as the drug sample in this study
and showed 70% loading content and 50% entrapment efficiency. By comparing the results
presented in Figure 20c,d, it can be observed that significant growth inhibition of the
hepatoma cell line SMMC-7721 occurred. The authors believe that the growth inhibition
of the hepatoma cell line SMMC-7721 was induced by 5-FU-FGQCs at ~1 µg/mL (the
IC50 concentration was 50% compared to only 10% of the same amount of free 5-FU).
Hence, FGQCs, with magnetic and fluorescence characteristics, have potential for drug
delivery applications.
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Despite these promising results, we note that the main concern regarding the use of
many magnetic-QD platforms in biomedical applications is their inherent toxicity, which
arises from the heavy metals in QDs (e.g., Cd, Se, Pb, As, and/or In) [65,66]. Consequently,
applications involving these magnetic-QD platforms are currently restricted to in vitro and
animal studies.
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5. Integration of Noble Metal Nanoparticles and Magnetic Iron Oxide Nanoparticles

Noble metal nanoparticles exhibit remarkable optical properties that arise from surface
plasmon resonances, which can be controlled from the ultraviolet to the near-infrared
(NIR) regions of the electronic spectrum by optimizing the size, composition, shape, and
topology of noble metal NPs [67–70]. As NIR light can penetrate deeply into human
tissue [71], the absorption of light in the NIR regions by noble metal NPs makes them
great candidates for use as contrast imaging agents to visualize organ tissue [72] and as
therapeutic agents for tumor ablation and/or drug delivery [73]. The combination of noble
metal NPs and magnetic NPs into one platform offers multiple diagnostic and therapeutic
modalities simultaneously, which can improve the accuracy and clarity of diagnostic images
while reducing time and expense [74]. Table 4 summarizes representative studies on the
integration of noble metal NPs and magnetic NPs for biomedical applications covered in
this section.
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Table 4. Integration of noble metal NPs and magnetic NPs for biomedical applications.

NP Morphology Final Size
(nm) Applications Ref.

Fe3O4@Au

Nanosphere
(core–shell) 20 Photothermal therapy [75]

Nanospikes 48–52 Theragnostic agent [76]

Fe3O4@Au-
mPEG-PEI

Nanosphere
(core–shell) 263 MR/CT dual-mode imaging [77]

Fe3O4@SiO2@
GNSs-PEG Nanosphere ~100 MR/CT dual imaging and

photothermal therapy [78]

Fe3O4@Ag-PAA Nanosphere
(core–shell) ~10 Photothermal therapy [79]

Fe3O4-Ag-PAA Nanosphere
(heteromer) ~10 Photothermal therapy [79]

SPION-Ag Nanosphere
(core–shell) ~30 Antibacterial [80]

SPION-Au Nanosphere
(core–shell) ~30 Antibacterial [80]

SPION-Au/Ag Nanosphere
(core–shell) ~40 Antibacterial [80]

Abbreviations: AuNC: gold nanocube; AuNS: gold nanoshell; PEG: polyethylene glycol; MR: magnetic res-
onance; CT: computed tomography; mPEG-PEI: polyethyleneimine-poly(ethylene glycol) monomethyl ether;
PAA: poly(acrylic acid); SPION: superparamagnetic iron oxide nanoparticle.

Due to their optical properties, stability, and biocompatibility, gold nanoparticles
(Au NPs) have been used in various biological applications. Iron oxide and gold-based
nanostructures for medical applications have been reviewed in the literature [81]. In
general, magnetoplasmonic nanoassembly hybrid systems combine the advantages of
the magnetic and plasmonic properties of Fe3O4 and Au NPs. For example, Li et al.
reported the use of Fe3O4@Au-mPEG-PEI core–shell composite nanoparticles for dual-
mode MR/CT imaging applications [77]. In this system, the Fe3O4@Au NPs were stabilized
with polyethyleneimine (PEI) and poly(ethylene glycol) monomethyl ether (mPEG). A
hemolytic assay showed excellent hemocompatibility of Fe3O4@Au-mPEG-PEI core–shell
nanoparticles in the concentration range of 0−400 µg/mL. Additionally, the nanoparticles
showed good cytocompatibility at concentrations up to 100 µg/mL. Importantly, the
composite NPs exhibited a relatively high r2 relaxivity of ~146 mM−1S−1 and good X-ray
attenuation properties. Consequently, the nanoparticles were successfully used as a contrast
agent for dual-mode MR/computed tomography (CT) imaging of tumor cells in mouse
and rat livers.

Coating of gold on magnetic nanoparticles has been reported to not only enhance
biocompatibility but also maintain the magnetic properties of the original NPs. Moreover,
the high stability of gold can prevent decomposition of the magnetic nanoparticles [82].
Recently, Multari et al. synthesized hybrid nanoparticles of iron oxide decorated with gold
(Fe3O4-Au) nanoparticles using tannic acid as a reducing agent [75]. The nanoparticles
exhibited superparamagnetic behavior and a plasmonic peak at 560 nm, which is suitable
for use in biomedical applications. The hybrid Fe3O4-Au nanoparticles showed good
photothermal therapy ability against cancer cells under laser irradiation. Other shapes of
gold-based magnetoplasmonic nanoparticles have been developed for use in biological ap-
plications. For example, Zhou et al. reported an in vivo study of spiky Fe3O4@AuNPs [76].
Specifically, spiky Fe3O4@AuNPs with different branch lengths exhibited different SPR
peak positions. While short-branched NPs with 51.4 nm cone-shaped AuNPs on spherical
Fe3O4 surfaces showed an SPR peak at 575 nm, long-branched NPs exhibited two extinction
peaks of transverse and longitudinal modes at 540 and 745 nm, respectively [76]. Moreover,
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both short- and long-branched spiky Fe3O4@AuNPs exhibited low toxicity and good bio-
compatibility, which are important for applications of nanoparticles as theragnostic agents.

Hou and coworkers synthesized theranostic agents based on Fe3O4@SiO2@GNS–PEG
(PMGNS) nanoparticles [78]. The PMGNS nanoparticles showed imaging contrast abil-
ities in both magnetic resonance (MR) and computed tomography (CT) at different NP
concentrations. Specifically, the photothermal properties of the aforementioned nanopar-
ticles were evaluated by testing the temperature increase profiles of PMGNS solutions at
different concentrations (Figure 21a) and different power densities (Figure 21b) under NIR
laser irradiation. The results from both sets of photothermal heating curves showed the
highest temperature of 79.1 ◦C at a concentration of 320 µg/mL. Moreover, the tempera-
ture profiles after five cycles of heating were obtained to test the thermal stability of the
PMGNS nanoparticles. As shown in Figure 21c, the temperature of the PMGNS aqueous
solution still increased after five heating cycles. The magnetization curves obtained using a
vibrating sample magnetometer (VSM) showed a saturation magnetization (Ms) value of
0.52 emu g−1 for these PMGNSs, as illustrated in Figure 21d.
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Figure 21. (a) Temperature profiles of ultrapure water and PMGNS solutions at different con-
centrations as a function of 808 nm laser irradiation for 10 min at a power density of 2 W cm−2.
(b) Temperature profiles of PMGNS solutions at different powers as a function of 808 nm laser
irradiation for 10 min at a concentration of 80 µg mL−1. (c) Temperature monitoring of a PMGNS
aqueous suspension at a concentration of 80 µg mL−1 during successive ON/OFF laser cycles at
a power density of 2 W cm−2. (d) Magnetic hysteresis curves of PMGNSs attracted by a magnet.
Reproduced with permission from reference [78].

In addition to gold nanoparticles, silver nanoparticles (Ag NPs) have also been utilized
in various biomedical applications, especially as anticancer or antibacterial agents [83]. Var-
ious magnetite-silver hybrid nanoparticles, including core–shell, multishell core–shell, and
heteromeric structures, have been reported [79,80]. For example, magnetite-silver hybrid
NPs, both core–shell (Fe3O4@Ag-PAA) and heteromeric (Fe3O4-Ag-PAA) nanoparticles,
were developed for tumor magnetic hyperthermia treatment [79]. Both the Fe3O4@Ag-PAA
and Fe3O4-Ag-PAA nanoparticles exhibited higher hyperthermia efficiency than bare mag-
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netic nanoparticles. As shown in Figure 22, TEM images of SMMC-7721 cells treated with
Fe3O4-PAA NPs (Figure 22a,d) showed significantly less magnetic hyperthermia efficiency
than SMMC-7721 cells treated with Fe3O4@Ag-PAA (Figure 22b,e) and Fe3O4-Ag-PAA
hybrid NPs (Figure 22c,f) in the presence of an alternating-current magnetic field.
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In a separate study, Marmoudi and Serpooshan reported superparamagnetic iron oxide
nanoparticle (SPION) core-ultrathin silver shell structures with polymeric ligand gaps for
use as multimodal antibacterial agents [80]. Interestingly, SPION-silver core–shell, SPION-
gold core–shell, and SPION-gold-silver core-intermediate shell–shell nanoparticles were
synthesized, and the properties of the silver and gold shells were compared for therapeutic
applications. The silver-coated SPIONs and gold-silver-coated SPIONs showed high
therapeutic indices against Staphylococcus epidermidis and Staphylococcus aureus infections,
as determined by live/dead assays. Moreover, the silver-coated SPIONs exhibited less
toxicity in a human liver carcinoma cell line (HepG2), confirming the biocompatibility of
these functionalized silver nanoparticles.

The examples shown here demonstrate the fabrication and utility of various types
of magnetic iron oxide NP nanocomposites integrated with different noble metal NPs.
The functionality of the nanocomposites can be tuned by varying the size, composition,
shape, and topology of the NPs. Moreover, the examples presented here illustrate that
rational engineering and design can transform nanomaterials into practical tools for future
biomedical applications.

6. Integration of Stimuli-Responsive Polymers and Magnetic Iron
Oxide Nanoparticles

Integration of magnetic NPs with polymers can expand the scope of their application
in a variety of ways. Polymers have been widely used to improve the stability, aqueous dis-
persion, biocompatibility, and bioavailability of magnetic NPs for in vivo applications [84].
A common example of this is embedding magnetic NPs inside a shell composed of the US
FDA-approved polymer poly(lactic-co-glycolic acid) (PLGA) and its derivatives [84–86].
However, the potential of magnetic nanoparticles is truly realized when integrated with
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stimuli-responsive polymers. Stimuli-responsive polymers can exhibit dramatic prop-
erty changes in response to one or more external stimuli, such as temperature, pH, light,
chemical, electrical, and mechanical stress [86]. Table 5 lists representative studies on
stimuli-responsive polymer-integrated magnetic nanoparticles for biomedical applications
covered in this section.

Table 5. Stimuli-responsive polymer-integrated magnetic NPs for biomedical applications.

NP Conjugate Morphology Final Size
(nm) Applications Ref.

IONPs PLGA Nonspherical 80–90 AMF-triggered DDS (LCST) [84]

SPIONs@
carbon PNIPAm-MBAm Spherical

(core–shell) 280
Inductive magnetic

heating-triggered DDS (LCST) for
5-Fluoruoracil

[87]

IONPs PNIPAm-co-AAc Irregular 14–43 AMF-triggered MHT and DDS
(LCST) for DOX [88,89]

IONPs@SiO2 PNIPAm-co-PVNP Yolk-shell ~165 NIR-triggered DDS (LCST) for DOX [90]

Fe3O4 and
γ-Fe2O3

PNIPAm-co-HAAm
MNPs embedded

in polymer
nanofiber

~350 AMF-triggered MHT and DDS
(LCST) for DOX [91]

IONPs PNIPAm-co-PEGMEA Cubic 19–22 AMF-triggered DDS (LCST) for
DOX [92]

SPIONs PPZ Spherical 153 AMF-triggered MHT, and MRI [93]

Fe3O4
PNIPAm, PEG,

dopamine Spherical 200 AMF-triggered MHT and DDS
(LCST) for DOX, and MRI [94]

IONPs PEO-b-PPO-b-PEO,
gelatin Spherical 28–36 AMF-triggered DDS (LCST) [95]

SPIONs PEG-b- PAsp(DIP) Spherical
nanovesicles ~200 DDS (pH) for DOX, and MRI [96]

IONPs [PNIPAm-
r(PEGMEA)]-b-PAA Irregular 23–27 AMF-triggered MHT and DDS

(LCST + pH) for DOX, and MRI [97]

Abbreviations: IONPs: iron oxide nanoparticles; SPIONs: superparamagnetic iron oxide nanoparticles; MNPs:
magnetic nanoparticles; AMF: alternating magnetic field; MHT: magnetic hyperthermia therapy; MRI: magnetic
resonance imaging; DDS: drug delivery system; NIR: near-IR light; LCST: lower critical solution temperature;
UCST: upper critical solution temperature; Tg: glass transition temperature; Tc: Curie temperature; PLGA:
poly(lactic-co-glycolic acid); PNIPAm: poly(N-isopropyl acrylamide); MBAm: N,N’-methylenebisacrylamide;
AAc: acrylic acid; PNVP: poly(1-vinyl-2-pyrrolidone); PEGMEA: polyethylene glycol methyl acrylate); PEG:
polyethylene glycol; PPyCOOH: carboxylic polypyrole; PPZ: poly(organophosphazene); P(EO-co-PO)-b-PLL:
poly(ethyleneoxide-co-propyleneoxide)-b-poly(L-lysine); PAsp(DIP): poly(2-(diisopropylamino)ethyl aspartate;
FA: folic acid; Glu-Hyd: glutamate hydrozone; mPEG-b-P(DPA-DE)LG: methyloxy-poly(ethylene glycol)-
block-poly[dopamine-2-(dibutylamino) ethylamine-L-glutamate]; p(HEMA-co-DMA): poly(2-hydroxyethyl
methacrylateco-dopamine methacrylamide); DOX: doxorubicin; BTZ: bortezomib.

6.1. Integration of Thermo-Responsive Polymers

By coupling the unique properties of magnetic NPs and thermally responsive poly-
mers, the emergence of a new paradigm in controlled drug delivery and novel nanoscale
therapeutic agents is now a reality. In general, these developed platforms are prepared
by the encapsulation/deposition of magnetic NPs within stimuli-responsive polymer
networks [98–104]. The polymeric layer serves as a “smart” container that can encapsu-
late/load and subsequently release drugs/substances from the polymer network upon
external adjustment of the local temperature above the lower critical solution temperature
(LCST) of the stimuli-responsive polymer [98–104]. The magnetic component acts as an
energy converter to transfer received magnetic energy to heat via hysteresis losses and
Néel and Brownian relaxation effects [105,106]. Hence, an oscillating magnetic field can
increase the temperature of polymer networks near magnetic NPs, thereby enabling re-
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motely modulated drug delivery [100,102–104]. The process of releasing a drug from these
polymer-MNP composites is illustrated in Figure 23.
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Poly(N-isopropylacrylamide) (PNIPAm) is one of the most commonly used thermally
responsive polymers, with dimensions that can be altered upon stimulation by temper-
ature [107]. Above a certain temperature in aqueous solutions, the hydrogen bonds in
such hydrogel polymers are broken, and the polymer undergoes a reversible phase tran-
sition from a swollen hydrated state to a collapsed dehydrated state. The temperature
at which the phase transition occurs is defined as the lower critical solution temperature
(LCST) [108–111]. The LCST of PNIPAm is approximately 32 ◦C [112,113]. Localized heat-
ing of PNIPAm integrated with plasmonic metal nanostructures has been widely exploited
for remote-controlled drug delivery triggered by NIR light [85]. NIR light can pass through
human tissues and couple with NIR-responsive nanoparticles, which in turn generate heat
in the integrated PNIPAm materials [85]. NIR light-triggered delivery of anticancer drugs
has also been achieved using Fe3O4@PNIPAm yolk-shell NPs [90].

Magnetic nanoparticles offer another important mechanism for remote heating of PIN-
PAM nanoparticles. Heat is generated in magnetic nanoparticles when they are subjected to
an alternating magnetic field (AMF), which can lead to deswelling of integrated polymers
and the release of encapsulated drugs. Ramanujan and coworkers were among the first
groups to integrate PNIPAm with IONPs for targeted release of the anticancer drug doxoru-
bicin (DOX) [88,89]. Preliminary studies showed that DOX can be loaded within a magnetic
PNIPAm nanoparticle and subsequently released by either adjusting the local temperature
above the LCST or using a rapidly alternating magnetic field [88]. During the course of
exposure to a magnetic field (47 min), approximately 14% of the drug was released, and
the temperature of the colloidal solution was rapidly increased from room temperature to
41–48 ◦C. The ability to generate heat in the range of 41–48 ◦C when subjected to an external
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magnetic field allows this platform to potentially be used as a therapeutic agent that can
simultaneously release drugs and generate heat for cell ablation (e.g., tumor eradication). In
a related study, drug release from a PNIPAm-based core–shell magnetic NP was confirmed
to be much higher above the LCST, with 78% release of the loaded drug within 29 h [89].
In another example, Jaber et al. prepared IONPs embedded in mesoporous SiO2 shells
(IONPs@mSiO2) and then loaded PNIPAm containing the anticancer drug H3PMo12O40 in
the pores of the mesoporous SiO2 shells for controlled drug release under an alternating
current magnetic field [114]. However, in most of these studies, the LCST of PNIPAm itself
was approximately 34–35 ◦C and was unchanged when integrated with IONPs. Given that
the physiological temperature of the human body is approximately 37 ◦C, a higher LCST is
desired to prevent undesired drug release in the absence of an AMF.

The LCST of PNIPAm can be increased by increasing the hydrophilic character of the
polymer. Chen et al. grew a PNIPAm shell around an IONP@carbon core–shell NP [87].
The presence of multiple functional groups on the carbon shell displayed a ζ-potential of up
to -33.0 mV and increased the LCST of the PNIPAm networks to 45 ◦C. These nanoparticles
collapsed from a size of 280 nm to 257 nm under an AMF, effectively releasing the loaded
hydrophilic epithelial anticancer drug 5-fluorouracil. Thus, application of an AMF can serve
as an “on–off switch” for drug release. Higher LCSTs can also be achieved by cografting
other monomers into the PNIPAm chains. Kakwere et al. incorporated the hydrophilic
polymer polyethylene-glycolmethyl-ether-acrylate with PNIPAm (PNIPAm-co-PEGMEA)
to increase the LCST above 37 ◦C (see Figure 24a) [92]. In this study, the authors used cubic
IONPs, which possess a high specific absorption rate compared to spherical IONPs; as a
result, lower doses of IONPs could be applied in vivo to reach therapeutic temperatures.
Other commonly used comonomers for increasing the LCST of hydrogel polymers are acryl
amide (-co-AAm) and acrylic acid (-co-AAc); the LCST of PNIPAm-co-AAc can be adjusted
in a range of ~30–60 ◦C [115].

Magnetic NPs also have an intrinsic ability to kill cancer cells via magnetic hyperther-
mia therapy (MHT). AMF-induced MHT is preferred because the tumor temperature can
be easily regulated by adjusting the magnetic field strength (H) and frequency (f) [116].
Additionally, AMF can penetrate and heat deep tumors without damaging normal hypo-
dermal tissues [116]. Modern therapeutic materials have been designed to simultaneously
exploit both the anticancer drug release and MHT properties of polymer-integrated IONPs,
with targeted temperatures above ~45 ◦C [116]. Aoyagi and coworkers designed DOX-
and MNP-embedded hyperthermia nanofibers consisting of a copolymer of NIPAm and
N-hydroxymethylacrylamide (HMAAm), named poly(NIPAm-co-HMAAm) [91]. Local-
ized heating to a temperature of 45 ◦C was achieved, triggering a synergistic activity of
DOX release and hyperthermia; as a result, 70% cell death was observed within 5 min.
The HMAAm copolymer cross-links provided better stability to the system and prevented
MHT side effects from eluted MNPs. Nearly all of the loaded DOX (>90%) was released
after four AMF ‘on’ cycles, while only negligible amounts were released during the cooling
‘off’ process (see Figure 24b).

Another important benefit of MNPs is their ability to be viewed via magnetic res-
onance imaging (MRI), which can enable visual tracking of polymer-integrated MNPs
in vivo. Magnetic resonance imaging (MRI)-guided MHT can not only monitor therapeutic
outcomes but also measure the tumor temperature without insertion of a thermal probe [93].
Jaiswal et al. embedded PEG-functionalized Fe3O4 nanostructures in PNIPAm hydrogels,
ensuring 95% cancer cell death via the synergistic effects of heating and DOX drug release,
as demonstrated in Figure 25 [94]. Importantly, MRI monitoring allowed the authors to
study the accumulation of NPs in mouse livers, lungs, and hearts.
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Figure 24. (a) Drug release from thermoresponsive PNIPAm-co-PEGA cubic-IONPs in a water
bath at various temperatures (50 ◦C, black box; 37 ◦C, red box; 25 ◦C, blue box; 4 ◦C, purple box).
Reproduced with permission from reference [92]. Copyright 2015 American Chemical Society. (b) ‘On–
off’ switchable and reversible heat profile and swelling ratio of MNPs with crosslinked poly(NIPAm-
co-HMAAm) nanofibers and the DOX release profile corresponding to the reversible swell–shrink
property in response to temperature changes. DOX release = D released at X/D total × 100 (%); M
released at X is the cumulative amount of released DOX at the X cycle of AMF alternation; and M
total is the total amount of incorporated DOX in MNP-loaded nanofibers. Swelling ratio = (Wswell −
Wdry)/Wdry, where Wswell is the weight of swelled MNP-loaded nanofibers and Wdry is the weight
of dried MNP-nanofibers. Reproduced with permission from reference [91]. Copyright 2013 John
Wiley and Sons.

Although PNIPAm is the most popular polymer for AMF-triggered drug release, other
polymers have also been incorporated with MNPs to perform similar functions. Liu et al.
utilized block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-b-PPO-
b-PEO) combined with MNPs to trigger an 80% ‘burst’ drug release at 45 ◦C [95]. The hybrid
NPs showed very little leakage at room temperature (25 ◦C) and physiological temperature
(37 ◦C) [95]. Integrated polymers can also provide additional functions in thermoresponsive
magnetic systems, such as long-term retention, cell targeting, and enhanced stability.
Zhang et al. used SPION-loaded nanocapsule hydrogels of poly(organophosphazene) (PPZ)
to impart long-term retention in tumors (80% after 6 days) for multiple MHT treatments
(temp. ~45 ◦C) while also serving as an MRI contrast agent to guide the therapeutic
process [93]. The long-term retention in tumors of PPZ allowed multiple MHT treatments
without the need for additional injections, increasing the efficacy compared to a single
MHT process (see Figure 26).
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Figure 25. Schematic illustration of the anticancer activity of magnetic nanostructure (MNS) hydrogels
loaded with the chemotherapeutic agent doxorubicin (DOX). The MNS was functionalized with
nitro-dopamine-PEG to achieve aqueous stability. After cellular uptake, the applied external RF
field activates the MNS hydrogels and stimulates DOX release by rupturing the polymeric hydrogel.
Due to the presence of the MNS, the hydrogel also acts as an MRI contrast agent. Reproduced with
permission from reference [94]. Copyright 2015 Elsevier.

6.2. Integration of pH-Responsive Polymers

With a pH of ~6.8, the extracellular medium of a tumor is more acidic than that of blood
and normal tissues (with a pH of 7.4), and lysosomes are even more acidic (pH~5.0–5.5) [97].
The three-dimensional structure of pH-responsive polymers can expand under basic condi-
tions and collapse under acidic conditions [107]. Consequently, pH-responsive polymers
have been investigated by many researchers for possible applications in anticancer drug
delivery [117]. For example, diblock copolymers of PEG and 2-(diisopropylamino)ethanol
grafted poly(L-aspartic acid) (PEG-PAsp(DIP)) integrated with SPIONS showed signif-
icantly higher release of DOX (80% after 2 h and 90% after 24 h) at pH 5 compared to
pH 7.4 (<20% after 24 h) [96]. After 2 h of incubation with cells at 37 ◦C, the drug-loaded
nanovesicles were taken up by endocytosis and entrapped inside lysosomes. Importantly,
the authors observed that DOX accumulated inside the nuclei, indicating release and migra-
tion of DOX from the nanovesicles at lysosomal pH. Moreover, integration with magnetic
nanoparticles enabled monitoring of this chemotherapeutic process using MRI.
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Figure 26. (a) Elevated tumor temperature versus time graphs induced by multiple MHT treatments
after a single injection of PEGylated SPION aqueous solution. Mice were treated under the same
AMF conditions. (b) In vivo therapeutic outcomes of multiple MHTs or single MTAs in tumor
xenograft mice. Tumor volume (V/Vinital) was plotted versus time after treatment. (c) Long-term MRI
monitoring of tumor xenografted mice injected with SPION-NHs. Tumor tissues are marked (yellow
dashed line), and the black color within the tumor indicates the presence of SPIONs. Reproduced
with permission from reference [93]. Copyright 2016 Elsevier.

Recent designs combine both the thermoresponsive and pH-responsive properties of
polymers with the MHT and MRI capabilities of IONPs [94,97]. Dutta et al. grafted poly((N-
isopropylacrylamide-ran-poly(ethylene glycol) methyl ether acrylate)-block-poly(acrylic
acid) (P(NIPAm-r-PEGMEA)-b-PAAc) polymers onto IONPs and investigated the effects
of polymer composition, temperature, and pH on DOX release [97]. The results showed
a much higher drug release at pH 5.0 than at pH 7.4, while an increase in the number of
PEGMEA units restricted drug release at temperatures of 37 and 40 ◦C (see Figure 27). Thus,
temperature-controlled release of DOX was achieved at 45 ◦C, preferentially in lysosomes of
cancer cells at pH 5.0. Overall, the above examples demonstrate that integration of magnetic
NPs and stimuli-responsive polymers allows the development of new nanotechnology-
based therapeutic strategies. These platforms might contribute to future controlled drug-
release systems, novel therapeutics, and new contrast agents in which the drugs or agents
can be released by exposure to an oscillating magnetic field, while the therapeutic results
can be synergistically monitored and diagnosed using MRI techniques.
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thermoresponsive and pH-responsive polymer properties with IONPs. (b) DOX release profile
from P(NIPAm)97-b-(tBA)51-DOX-MNPs under different conditions and from (c) [P(NIPAm)85-r-
(PEGMEA)15]-b-(PtBA)51-DOX-MNPs at pH 5.0 at different temperatures. Reproduced with permis-
sion from reference [97]. Copyright 2016 Elsevier.

7. Integration of Multiple Conjugates with Magnetic Iron Oxide Nanoparticles

In addition to NP-based systems that integrate magnetic iron oxide NPs with one of
the five conjugate types mentioned above, numerous studies have developed platforms for
biomedical applications by combining magnetic IONs with multiple conjugates, such as an
organic dye and a biomolecule or a biomolecule with a stimuli-responsive polymer. These
systems can offer various advantages due to their ability to perform several tasks in parallel,
such as cancer cell targeting, dual-mode imaging, drug delivery, and therapy [118–122].
Table 6 provides a summary of multiconjugate integrated magnetic iron oxide NP-based
platforms for biomedical applications.
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Table 6. Multiconjugate integrated magnetic nanoparticles for biomedical applications.

NP Conjugates Morphology Final Size
(nm) Applications Ref.

IONPs@DPSE-
mPEG

DiI and Cyclic RGD or
Cyclic RAD

Spherical
(core–shell) 24–46 Multimodal tumor-targeting

MRI and FI [15]

SPION@PEG Cy5.5 and gH625 - 98 Multimodal tumor-targeting
MRI, FI, and hyperthermia [118]

Gelatin@IONPs Cy7 and
HSA-DVS-FGF2

Spherical
(core–shell) >103

Controlled release of growth
factors for augmentation of
human mesenchymal stem
growth and differentiation

[123]

Fe3O4@SiO2@
p(HEMA)

FITC, FA, and
p(NIPAAM-co-AA)

Spherical
(core–shell) ~

Dual thermoresponsive and
pH-sensitive drug delivery

for DOX
[124]

Fe3O4@PEI@ PEG Cy5.5 and HCBP-1 Spherical ~30 MRI and FI agent for lung
cancer stem cell targeting [125]

Fe3O4@SiO3-β-CD FITC and FA Spherical
(core–shell) 70

Magnetic manipulation,
bioimaging, cell targeting, and

drug delivery
[119]

Fe3O4@mSiO2-PEI RhB and siRNA Spherical
(yolk-shell) 63

Fluorescence tracking and
magnetically guided small
interfering RNA delivery

[126]

IONPs-PS Coumarin-153, IgG,
and ICAM-1 Nanowires 7440 × 270 Potential tumor targeting MRI

and FI [127]

Fe3O4@mSiO2 FITC, AlC4Pc, and FA Spherical
(yolk-shell) ~50 Tumor targeting MRI, FI, and

photodynamic therapy [120]

Fe3O4@PAA Rh123, and FA-PEG Spherical ~86 Dual-modal molecular imaging [128]

IONP@SiO2-PEG RhB and cetuximab Spherical
(core–shell) ~60 In vivo colon cancer targeting

and imaging [129]

SPION@SiO2 Cy5.5 and RGD Spherical
(core–shell) ~97 Magnetically enhanced cancer

imaging and targeting [130]

DySiO2-Fe3O4 RhB and HmenB1 Spherical ~45 Dual-modal MRI and FI
of neuroblastoma [131]

SPION@dextran Cy5.5 and EPPT Spherical 41 Dual-modal in vivo imaging of
tumor response to therapy [132]

MNPs DiI and anti-EpCAM,
or anti-N-cadherin Spherical ~160 CTC capture, 98.8% [133]

USPIO/Ag NPs or
Au NPs Anti-MG1 Spheroidal ~47 Photothermal ablation of

liver metastases [134]

IONPs FITC and anti-EpCAM Spherical ~200 CTC isolation and
detection, 87% [135]

Fe3O4@CdSe/ZnS
QDs

S. pneumoniae
antibodies Spherical 150 Detection of bacteria [136]

Fe3O4@ZIF–
8/MoS2 QDs cDNA - 100 Detection of ATP [137]

CdTe QDs-Fe3O4 hCC49 antibodies Spherical 50 Imaging colon carcinoma cells [138]

IONP@QDs
(QDs:575, 605,

635, 485)
anti-HER2 antibodies - 250 ± 81

Selective cell isolation and
counting on smartphone-based

imaging platforms
[139]
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Table 6. Cont.

NP Conjugates Morphology Final Size
(nm) Applications Ref.

Fe3O4@Ag/gra-
phene–QDs anti-CFP-10 antibodies

Spherical NPs
deposited onto
glassy carbon

electrodes

270 Electrochemical immunosensor
for tuberculosis [140]

Aurod-(Fe3O4) Herceptin Nanorods 15
Dual-mode imaging, and
photothermal ablation of

cancer cells
[121]

Au NC@Fe3O4 Folic acid Nanocages 70 Multimodal contrast agents [141]

Au NS@Fe3O4
/SiO2

Streptavidin Nanosphere ~100 Magnetic and optical imaging
and photothermal therapy [142]

Fe3O4@SiO2/Ag Raman-label
compounds

Nanosphere
(core–shell) 50 Cancer cell targeting [143]

Fe3O4@SiO2/Ag
Raman-label

compounds, and
antibody

Nanosphere
(core–shell) 50 Cancer cell separation [143]

IONPs PPyCOOH, PEG, FA Irregular 47 AMF triggered MHT and DDS
(Tg) for DOX [116]

MNPs PEG-g-p(AAm-co-
AN)-A54 Irregular 80 AMF-triggered MHT and DDS

(UCST) for DOX [144]

SPIONs PEG-(Glu-Hyd)-
PEG-FA

Spherical
nanovesicles 150 DDS (pH) for DOX, and MRI [145]

mSiO2@ SPIONs HAMA-b-DBAM-FA Spherical ~200 DDS (pH) for DOX, and MRI [146]

Fe3O4@Gd2O3 PEG-FA Yolk-shell 109 DDS (pH) for cisplatin, and
dual-mode MRI [122]

IONPs poly(β-aminoester)-
FA Irregular 50–200 DDS (pH) for DOX, and MRI [147]

IONPs mPEG-b-P(DPA-
DE)LG — ~120 pH-triggered MRI probes [148]

SPIONs p(HEMA-co-DMA) Spherical ~20 DDS (pH) for BTZ, and MHT [149]

Abbreviations: IONPs: iron oxide nanoparticles; SPIONs: superparamagnetic iron oxide nanoparti-
cles; MNPs: magnetic nanoparticles; mSiO2: mesoporous silica; DPSE-mPEG: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000]; cyclic RGD: cyclo(-Arg-Gly-Asp-D-Phe-Cys)
peptide; cyclic RAD: cyclo(-Arg-Ala-Asp-DPhe-Cys) peptide; Cy5.5: cyanine-5.5; gH625: membranotropic peptide
gH625; Cy7: cyanine-7; HAS: human serum albumin; DVS: divinyl sulfone; FGF2: fibroblast growth factor 2;
p(HEMA): poly(2-hydroxyethyl methacrylate); p(NIPAAM-co-AA): poly(N-isopropylacrylamide-acrylic acid);
FITC: fluorescein isothiocyanate; FA: folic acid; PEI: polyethyleneimine; RhB: rhodamine B; HCBP-1: GGLGCF-
PEGEMACWWSGGSGK peptide; β-CD: β-cyclodextrin; PS: polystyrene; IgG: immunoglobulin-G; ICAM-1:
intercellular adhesion molecule 1 antibody; AlC4Pc: tetra-substituted carboxyl aluminum phthalocyanine; PAA:
poly(acrylic acid); Rh123: rhodamine 123; FA-PEG: folic acid-linked poly(ethylene glycol); RGD: arginine-glycine-
aspartic acid; DySiO2: dye-doped silica; HmenB1: HmenB1 antibody; EPPT: C-AHA-A-R-E-P-P-T-R-T-F-A-
Y-W-G-K peptide; EpCAM: epithelial cell adhesion molecule; CTC: circulating tumor cell; USPIO: ultrasmall
superparamagnetic iron oxide; AMF: alternating magnetic field; MHT: magnetic hyperthermia therapy; MRI:
magnetic resonance imaging; DDS: drug delivery system; NIR: near-IR light; LCST: lower critical solution temper-
ature; UCST: upper critical solution temperature;Tg: glass transition temperature; Tc: Curie temperature; PLGA:
poly(lactic-co-glycolic acid); PNIPAm: poly(N-isopropyl acrylamide); MBAm: N,N’-methylenebisacrylamide;
AAc: acrylic acid; PNVP: poly(1-vinyl-2-pyrrolidone); PEGMEA: polyethylene glycol methyl acrylate); PEG:
polyethylene glycol; PPyCOOH: carboxylic polypyrole; PPZ: poly(organophosphazene); P(EO-co-PO)-b-PLL:
poly(ethyleneoxide-co-propyleneoxide)-b-poly(L-lysine); PAsp(DIP): poly(2-(diisopropylamino)ethyl aspartate;
Glu-Hyd: glutamate hydrozone; mPEG-b-P(DPA-DE)LG: methyloxy-poly(ethylene glycol)-block-poly[dopamine-
2-(dibutylamino) ethylamine-L-glutamate]; p(HEMA-co-DMA): poly(2-hydroxyethyl methacrylateco-dopamine
methacrylamide); DOX: doxorubicin; BTZ: bortezomib.

Very recently, the Bao group developed lipid-encapsulated Fe3O4 nanoparticles as
a contrast agent in multimodal MRI/FI [15]. Specifically, magnetite NPs with a well-
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controlled size distribution were synthesized via thermodecomposition before being coated
with copolymers of phospholipids and phospholipid-PEG to generate water-soluble MNPs.
Then, these polymer-coated MNPs were integrated with an organic dye dialkylcarbocya-
nine, such as DiO, DiI, DiD, or DiR, via hydrophobic interactions of the organic dyes with
the lipid layer of the shell of the MNPs. Finally, nanoprobes with desired sizes and optical
and magnetic properties were achieved by conjugation of the bioactive ligands cyclic RGD
or cyclic RAD peptides to the nanoprobes [15]. Figure 28 presents an illustration of the
design of these lipid-encapsulated organic dye-doped iron oxide MNPs, which exhibited
high stability in biomedical media and good biocompatibility. Moreover, the conjugated
peptides greatly increased the uptake of these nanoprobes by cells. In vitro and in vivo
experiments revealed good fluorescence signals and MRI contrast, demonstrating potential
application of these MNPs in biomedical fields [15].
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Figure 28. Illustrated design of lipid-encapsulated organic dye-doped polymer-coated iron oxide
MNPs for dual-MRI and FI. Reproduced with permission from reference [15]. Copyright 2020
American Chemical Society.

In another investigation, Wang et al. reported the fabrication of anti-epithelial cell
adhesion molecule (anti-EpCAM) and anti-N-cadherin antibodies onto fluorescent Fe3O4
magnetic nanoparticles (F-MNPs) to detect epithelial circulating tumor cells (CTCs), which
indicate early cancer development [133]. Due to the characteristic recognition of the anti-
bodies, the dual-antibody functionalized F-MNPs can selectively bind to CTCs before being
isolated using an external magnetic field and identified under a fluorescence microscope, as
shown in Figure 29a. The magnetite magnetic core was encapsulated with a fluorescent dye
DiI-decorated silica shell before being modified with poly(carboxybetaine methacrylate)
(pCBMA), streptavidin, and antibodies, as illustrated in Figure 29b.

The authors evaluated the MCF-7 human breast cancer cell line capture efficiency
of F-MNPs at various modification steps. The results shown in Figure 30a suggest the
highest capture efficiency of 98.8% for F-MNPs functionalized with both anti-EpCAM and
anti-N-cadherin antibodies. The modified magnetic nanoparticles were also evaluated
for their recognition performance, with MCF-7, HeLa, and CCRF-CEM cells used as cell
models for epithelial, mesenchymal CTCs, and blood cells, respectively. The dual-antibody-
modified F-MNPs showed higher capture efficiencies for both MCF-7 and HeLa cells than
single-antibody-modified nanoparticles, as shown in Figure 30b. Additionally, the selective
CTC identification and capture capability of the modified F-MNPs was shown by the
near-zero capture efficiency of the human T lymphocytic leukemia cell line CCRF-CEM,
suggesting that the antibody-modified magnetic nanoparticles have potential for efficient
early cancer detection. In a separate work, White et al. fabricated magnetic-plasmonic
ultrasmall superparamagnetic iron oxide (USPIO)-gold hybrid nanoparticles with anti-MG1
antibodies for targeted photothermal ablation of colorectal liver metastases [134]. Moreover,
Dong and coworkers prepared fluorescent magnetic mesoporous silica nanoparticles (M-



Materials 2022, 15, 503 35 of 47

MSNs) conjugated with fluorescein isothiocyanate (FITC) before modifying them with
EpCAM antibody for efficient detection of circulating tumor cells (CTCs) [135].
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Figure 30. Comparison of the capture efficiency of F-MNPs under various modification conditions (a)
for MCF-7 cells and (b) of anti-EpCAM-modified, anti-N-cadherin-modified, dual-antibody-modified
F-MNPs for different cells. Adapted with permission from reference [133]. Copyright 2019 American
Chemical Society.

Wang et al. developed improved magnetic-core@dual QD-shell nanoparticles (Fe3O4-
@DQDs) as multifunctional fluorescent labels for fluorescence lateral flow detection of
bacteria [136]. In this study, mercapto-propionic acid-functionalized QDs (CdSe/ZnS-MPA)
were chosen as dual QDs due to their outstanding and stable fluorescence properties.
Interestingly, the QD-adhering step was carried out two times to obtain the final targeted
Fe3O4@DQDs. Compared to Fe3O4@QDs, the Fe3O4@DQDs had a higher number of QDs,
leading to fluorescence enhancement of the whole nanostructure. For ultrasensitive bacteria
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detection, the combination of the magnetic property of Fe3O4 and the high fluorescence of
DQDs led to a highly sensitive bacteria detection LFA strip.

Recently, the Lee group reported a nanotriplex particle Fe3O4@Ag/graphene quantum
dot (GQD) as an electrochemical immunosensor for tuberculosis [140]. Because of the
Fe3O4 core, the nanomaterial had excellent magnetic properties and good water solubility,
as well as a large surface area due to its nanomorphology. Ag NPs were incorporated into
the nanomaterial to increase conductivity. For electrochemical immunosensor applications,
graphene quantum dots (GQDs) were integrated because they are great electron donors and
acceptors, which is rationalized by the large surface area and the presence of multiple types
of functional groups on the QD surface. The preparation of Fe3O4@Ag/GQDs is presented
in Figure 31a, and Figure 31b shows TEM images of the nanotriplex, revealing a diameter
of ~270 nm. As shown in Figure 31c, the differential pulse voltammetry (DPV) peak was
enhanced when the concentration of the analyte culture filtrate protein CFP-10 increased
during immunocomplex formation. The system showed a robust performance and high
selectivity for CFP-10 in the presence of antigen 85 complexes (Ag85), HspX protein of Mtb
(16 kDa), and bovine serum albumin (BSA), as shown in Figure 31d.
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Figure 31. (a) Preparation steps for the Fe3O4@Ag/GQD NP probe. (b) TEM image of Fe3O4@Ag/GQD
NPs. (c) Peak value of the electrochemical biosensor for CFP-10 detection at concentrations ranging
from 0 to 500 µg/mL. (d) DPV responses of the immune sensors to CFP-10 (0.5 mg/mL), HspX protein
of Mtb (1.8 mg/mL), Ag85 (3.57 mg/mL), and 2% BSA (3.57 mg/mL). Adapted with permission from
reference [140]. Copyright 2018 Elsevier.

Irudayaraj and coworkers fabricated a novel “nanopearl-necklace” structure that con-
sists of a single gold nanorod (Aurod) decorated with multiple “pearls” of 15 nm Fe3O4
magnetic NPs for use in simultaneous targeting, bimodal imaging, and photothermal
ablation of cancer cells [121]. In vitro assays of this system revealed that Aurod-(Fe3O4)
exhibited a stronger MR signal than bare Fe3O4 at an equivalent iron concentration due to
the magnetic coupling between the Fe3O4 particles assembled on the Aurod core. Conju-
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gates derived from covalent attachment of Herceptin to the Aurod-(Fe3O4) nanocomplexes
were observed to bind specifically to cancer cell surfaces and were internalized into the
cytoplasm, which was verified by MR and transmission electron microscopy (TEM) images.
An additional advantage of these nanocomposites is that the inherent fluorescence of the
Aurod component allows FI analysis. These studies indicate that such nanocomposites can
potentially serve as contrast agents for both MRI and FI modalities. Furthermore, the use
of these Herceptin-conjugated Aurod-(Fe3O4) NPs as therapeutic agents was also demon-
strated. Once the Herceptin-conjugated Aurod-(Fe3O4) NPs were ingested and allowed to
accumulate in the internal vesicles and cytoplasm of cancer cells, the NPs were irradiated
with a 785 nm NIR laser. The absorbed energy heated the Aurod, allowing local destruction
of cancer cells and illustrating efficient photothermal ablation.

Gold nanocages functionalized with Fe3O4 nanoparticles (F-AuNC@Fe3O4) have
also been studied for multimodal imaging of tumors (Figure 32) [141]. In this study,
nanocomposites were used as multimodal contrast agents for MRI/computed tomography
(CT) multimodal imaging. The aforementioned nanoparticles were conjugated with folic
acid to selectively bind with targeted folate receptor-overexpressing cancer cells. The results
from an in vivo CT imaging study showed that F-AuNC@Fe3O4 can enhance CT imaging
in the circulatory system. As shown in Figure 32b, the average signal intensity in kidney
and tumor tissues was enhanced from 0.5 h to 6 h, while the signal in other organs showed
fluctuation. Additionally, to study the biocompatibility of F-AuNC@Fe3O4 nanoparticles,
the nanoparticles were tested via a pathological assay (H&E staining). As shown in
Figure 32c–h, the results demonstrated that F-AuNC@Fe3O4 nanoparticles were present
in the kidney, bladder, and tumor at 6 h after injection. However, the nanoparticles were
absent in the liver and heart after the same period of time. Additionally, no morphological
changes were observed in the organs, suggesting that the nanoparticles were biocompatible.

Separate studies have described the fabrication of nanocomplexes composed of spheri-
cal gold nanoshell/silica core structures that were subsequently coated with 10 nm magnetic
NPs and an outer SiO2 layer doped with an NIR dye [142]. In this geometric structure,
the gold nanoshell absorbs light in NIR regions and can also significantly enhance the
fluorescence of the adjacent NIR dye molecules, thus significantly improving the resolution
of fluorescence images. Furthermore, incorporation of magnetic NPs on the gold nanoshell
surfaces led to increased magnetic interactions among the particles, thereby enhancing the
relaxivity and improving the MR signals. Additionally, the silica outer layer can be readily
modified with biomolecular entities for cell or protein targeting. Furthermore, the ability
to absorb NIR light and produce heat from the gold nanoshell component enables these
hybrid NPs to be used for photothermal ablation. Consequently, these integrated properties
allowed the use of this platform in multiple diagnostic and therapeutic modalities.

Surface-enhanced Raman spectroscopy (SERS)-encoded MNPs and AgNP-embedded
SiO2-coated Fe3O4 NPs (M-SERS) were reported as multifunctional materials for cancer
cell targeting and separation [143]. In this study, M-SERS nanoparticles were functional-
ized with various types of thiol-group-containing organic compounds to demonstrate the
enhancement of Raman scattering. Additionally, due to the presence of selected aromatic
compounds, the aforementioned nanoparticles exhibited strong SERS signals. To demon-
strate the magnetic properties of the M-SERS nanoparticles, an external magnetic force was
applied to the nanoparticles after conjugation with antibodies and targeted molecules. The
targeted cells with the M-SERS nanoparticles moved toward the magnet under an external
magnetic field. These results confirmed that the M-SERS nanoparticles are promising
materials for detection and separation of biomolecules.

In another study, Li et al. used a thermally sensitive and hepatic tumor-cell-targeting
peptide-A54-modified polymer, A54-poly(ethylene glycol)-g-poly(acrylamide-co-acrylonitrile)
(A54-PEG-g-p(AAm-co-AN)), assembled into 80 nm sized micelles, allowing DOX drug
transport and release and augmenting microwave hyperthermia at 43 ◦C [144]. Instead
of LCST, the operation of these polymers was centered around their upper critical solu-
tion temperature (UCST). Other thermally responsive polymers include those with glass
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transition temperatures (Tg) that coincide with typical MHT temperatures. For example,
IONP-embedded DOX-containing carboxylic polypyrrole systems soften above their Tg
of 44 ◦C, leading to the release of DOX [116]. These NPs were further modified with PEG
functionalized with folic acid (FA), and FA specifically binds to folate receptors overex-
pressed in cancer cells. Tumor temperatures of 44 ◦C were reached within 7 min of AMF
exposure, killing cancer cells throughout the entire tumor.
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Figure 32. (a) TEM image of F-AuNC@Fe3O4. (b) Average Hounsfield unit (HU) intensity in the heart,
liver, spleen, kidney, and tumor after intravenous injection. H&E staining of organ sections: (c) heart,
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Adapted with permission from [141].

As mentioned earlier, the inclusion of folic acid (FA) moieties can improve tumor-
specific delivery of pH-responsive integrated nanocarriers via attachment to folate receptors
overexpressed in cancer cells. Yang et al. designed triblock polymers with varying Mw
consisting of (folate (FA) or methoxy)-poly(ethylene glycol) (Mw: 5000)-poly(glutamate
hydrozone doxorubicin)-poly(ethylene glycol) (Mw: 2000)-acrylate (i.e., R (FA or methoxy)-
PEG114-P(Glu-Hyd-DOX)-PEG46-acrylate) [145]. The longer PEG chains containing FA
segregated toward the outer layer of the vesicles and facilitated targeted endocytic delivery,
while the shorter PEG block segregated to the inner region of the vesicles and facilitated
cross-linking and enhanced the in vivo stability of the nanovesicles. In another design,
hollow SiO2 NPs integrated with hydrophobic polymers containing folic acid and SPIONs
demonstrated drug release in an acidic environment in cancer cells; 70% of DOX was re-
leased at pH 5.0, whereas less than 5% was released in a neutral environment after 150 h (see
Figure 33a) [146]. The hollow SiO2 core enabled high drug loading efficiency, and targeted
delivery was tracked via MRI-active SPIONs. The MRI contrast of Fe-based nanoparti-
cles can be further enhanced by combination with Gd-based compounds, as shown by
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Sun et al. with their Fe3O4@Gd2O3 yolk-shell NPs functionalized with PEG and FA [122].
The yolk-shell design with a porous Gd2O3 shell improved MRI contrast, increased drug
loading, and enabled pH-induced release of the anticancer drug cisplatin inside tumor cells
(see Figure 33b–d). This targeted drug delivery nanosystem also demonstrated a marked
reduction in damage to vital organs compared with that observed with free cisplatin.
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Figure 33. (a) Release of DOX in vitro from drug-loaded pH-responsive PEG-PBLA-coated hollow
SiO2 NPs with SPIONs at different pH values at 37 ◦C. Reproduced with permission from refer-
ence [146]. Copyright 2012 Royal Society of Chemistry. (b) Cisplatin release from Fe3O4@Gd2O3

yolk-shell NPs functionalized with PEG and FA (FA-PYFGN-CDDP) under different pH conditions.
(c) Body weight changes after tumor-bearing nude mice were treated with free cisplatin (CDDP)
and cisplatin-loaded Fe3O4@Gd2O3 yolk-shell NPs functionalized with PEG (PYFGN-CDDP) or FA
(FA-PYFGN-CDDP) via tail vein injection. (d) Gd2O3-weighted (T1) and Fe3O4-weighted (T2) MR
images of mouse tumors acquired preinjection and postinjection of FA-PYFGN-CDDP and PYFGN-
CDDP. Tumors are marked by red dashed circles. Reproduced with permission from reference [122].
Copyright 2017 American Chemical Society.

Folate-conjugated, pH-sensitive poly(β-aminoester) self-assembled micelles with hy-
drophobic oleic acid-modified IONPs delivering DOX were shown to facilitate the treatment
of advanced gastric cancer via apoptosis of cancerous cells [147]. As seen in Figure 34a–c,
once again, the folate conjugates showed much greater suppression of tumor growth with-
out affecting the overall body weight and can be safely monitored via MRI. Yang et al. also
used methyloxy-poly(ethylene glycol)-block-poly[dopamine-2-(dibutylamino) ethylamine-
L-glutamate] (mPEG-b-P(DPA-DE)LG) micelles [148]. Dopamine has a high affinity for
IONPs, enhancing stability at physiological pH, while the mPEG moiety enhances disper-
sion in aqueous media. These nanoparticles acted as pH-sensitive MRI probes, releasing
IONPs at an acidic pH. Sasikala et al. used a unique copolymer with dopamine, poly(2-
hydroxyethyl methacrylate codopamine methacrylamide) p(HEMA-co-DMA) to surface
functionalize IONPs, taking advantage of dopamine’s affinity for IONPs [149]. The catechol
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groups in dopamine were also exploited to conjugate the borate-containing anticancer drug
bortezomib (BTZ). In this study, the researchers exploited the MHT capabilities of SPIONs
along with pH-sensitive drug release for synergistic thermochemotherapy. The synergistic
effect of BTZ and MHT therapy increased the apoptosis of cancer cells by nearly 4-fold
compared to BTZ release or MHT alone (Figure 34d,e).
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Figure 34. (a) The mRNA expression of Caspase 3, an apoptosis-associated gene, was examined
via RT–PCR upon exposure to PBS buffer, free DOX, or IONPs integrated with poly(β-aminoester)
(P-DOX) and folate (F-P-DOX). (b) Tumor growth curves and (c) body weight curves demonstrating
the improved antitumor efficacy of F−P-DOX in a GC xenograft model, without obvious adverse
effects. Each experiment was conducted in triplicate. * p < 0.05, ** p < 0.01, *** p < 0.001 vs PBS group;
# p < 0.05, ## p < 0.01, ### p < 0.001 vs DOX group; § p < 0.05, §§ p < 0.01 vs P- DOX group. Reproduced
with permission from reference [147]. Copyright 2015 American Chemical Society. (d) The in vitro
anticancer effects of p(HEMA-co-DMA)-integrated IONPs loaded with BTZ (HEDO–Fe3O4–BTZ) on
SCC7 cell lines. (e) Magic RedTM assay showing the apoptosis-inducing effect (red fluorescence)
with hyperthermia alone (HEDO–Fe3O4, AMF on), chemotherapy alone (HEDO–Fe3O4–BTZ), and
combined application of hyperthermia and chemotherapy (HEDO–Fe3O4–BTZ, AMF on). Adapted
with permission from reference [149]. Copyright 2015 Royal Society of Chemistry.

8. Summary and Perspectives

This review examines a variety of current composite magnetic IONPs that have been
integrated with different classes of organic and inorganic materials for biomedical applica-
tions. Research efforts have focused on integrating iron oxide MNPs and organic dyes into
single platforms for use as bimodal imaging agents for both in vitro and in vivo imaging
and to produce multifunctional platforms that simultaneously perform several tasks in
parallel, such as photodynamic therapy and dual-mode imaging for biomolecule detection.
Importantly, these platforms can provide better diagnostic information and a more comple-
mentary dataset due to their dual-diagnostic MRI/FI modalities than the corresponding
isolated imaging techniques. Due to their high biocompatibility, low cytotoxicity, and low
risk of immune rejection, various biomolecules, such as aptamers, antibodies, and even
stem cells, can be integrated with magnetic IONPs to develop highly targeted techniques
for diagnosis, therapy, and theranostics for many notorious diseases, and the results have
been promising.

Quantum dots (QDs), such as CdSe, ZnS, and CdS, and carbon dots (CDs), are rec-
ognized for their unique optical properties, such as resistance to photobleaching, high
molar extinction coefficient, and tunable emission ranges. Consequently, QDs are often
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incorporated with magnetic NPs to produce composite NPs that exhibit both fluorescence
and magnetism, and the effects of these composite NPs can be examined in vitro before
progressing to in vivo tests. However, the use of magnetic-QD platforms in biomedical
applications is limited due to the inherent toxicity of many current QDs. Thus, more
biocompatible QDs are needed for broader use of magnetic-QD platforms in biomedical
applications. In addition to QDs, combining noble metal NPs and magnetic NPs into one
platform offers multiple diagnostic and therapeutic modalities simultaneously, which can
improve the accuracy and clarity of diagnostic images while reducing time and expense.
Magnetic-noble metal NP-based platforms combine the magnetic properties of IONPs with
remarkable optical properties that arise from surface plasmon resonances, which can be
controlled from the ultraviolet to the near-infrared (NIR) regions of the electronic spectrum
by optimizing the size, composition, shape, and topology of noble metal NPs.

Moreover, integrating magnetic nanoparticles with polymers allows for fabrication of
multifunctional systems. Encapsulation and cross-linking with polymers provide improved
stability, circulation, biocompatibility, and pH-sensitive magnetic resonance imaging. An
alternating magnetic field can be applied to heat magnetic nanoparticles in vivo, which
can be used to stimulate thermosensitive and pH-sensitive polymers for targeted drug
delivery and chemotherapy. These advanced anticancer drug delivery capabilities can
also be coupled with magnetic hyperthermia therapy to kill cancer cells more effectively.
These chemotherapy and magnetic hyperthermia therapy processes can also be simulta-
neously monitored by utilizing the magnetic resonance imaging capabilities of magnetic
nanoparticle–polymer conjugates. Thus, coupling all of these unique properties of polymers
and magnetic nanoparticles enables the design and fabrication of more effective biomedical
materials. In addition, appropriate engineering and integration of magnetic IONPs with
multiple conjugates, such as an organic dye and a biomolecule or a biomolecule with a
stimuli-responsive polymer, can generate multifunctional nanoplatforms that can perform
multiple tasks simultaneously and be used in a broad range of biomedical fields.
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