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Abstract: The resistance of surfaces to biomaterial adsorption/adhesion is paramount for advancing
marine and biomedical industries. A variety of approaches that involve bioinert materials have
been developed to modify surfaces. Self-assembled monolayers (SAMs) are powerful platforms
in which the surface composition is easily fabricated and a well-defined structure is provided;
thus, the molecular-level interaction between biomolecules/biofoulants and the surface can be
understood. In this review, we describe a wide variety of SAM structures on gold and silica surfaces
for antifouling applications and the corresponding mechanism of nonfouling surfaces. Our analysis
divides the surface properties of films into the following types: (1) hydrophilic, (2) hydrophobic, and
(3) amphiphilic films.

Keywords: antifouling coatings; self-assembled monolayers (SAMs); fluorocarbon; oligo(ethylene
glycol) (OEG); amphiphilic coatings; hydrophobic coatings; hydrophilic coatings; protein resistance;
cell/bacteria adhesion

1. Introduction

Fouling is the accumulation of unexpected materials on a variety of surfaces [1]
such as heat exchangers [2], ship hulls [3], piping [4], membranes [5], biosensors [6],
and medical devices [7]. In particular, biofouling, which ranges from microorganisms
to macroorganisms, diminishes the original performance of surfaces, and biofilms have
adverse economic impacts on marine and medical industries [1]. For example, when boats
sail in water, marine organisms are deposited on the hull surfaces due to surface friction
drag, and the fouling layer later increases the surface roughness, which increases gas
consumption and engine stress [8]. A low degree of biofouling increases the required shaft
power by 11%, while heavy calcareous fouling has been attributed to powering penalties
as high as 86%, leading to an increase of 20% in fuel consumption [9]. Moreover, surface
contaminations by living organisms, including bacteria, fungi, and viruses, in a biological
medium provides biofouling, resulting in a risk of infection and decreasing biosensor
efficiency [10]. According to the Centers for Disease Control and Prevention, in 2011,
device-associated infections in U.S. acute care hospitals accounted for 26% of healthcare-
related infections [11]. Biosensors, as molecular detection devices, must operate with a
minimum sample amount and contact with unrefined biomaterials, such as blood or serum.
The biofluids include a variety of biocomponents in which each component undergoes
nonspecific adsorption on the sensor surface, leading to severe problems with the reliability
and sensitivity of results [12].

The formation of biofouling involves a multistep process. First, organic molecules,
including proteins, polysaccharides and proteoglycans, and inorganic compounds are
attached to the surface, forming conditioning films. The biofilm subsequently accumulates
as bacteria and diatoms adhere to the surface. The attachment occurs reversibly for a short
time (less than 1 min) in which the microorganisms utilize hydrodynamics (e.g., Brownian
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motion, gravitation and diffusion, and physicochemical interactions such as van der Waals
and electrostatic forces) to interact with the surface [13]. Furthermore, irreversible adhesion
(a few hours) occurs via covalent bonding, and a biofilm is formed. Finally, this biofilm
stimulates the settlement of algae and spores, followed by the attachment of macrofouling in
the case of marine environments [14]. The development of biofouling formation in medical
applications is similar to the processes in marine environments. When a medical device
is exposed to biological media, the initial process involves nonspecific protein adsorption
to the surface via hydrophobic interactions. The initial adsorption is reversible, but the
protein immediately denatures and exposes more hydrophobic components, leading to
irreversible attachment [15,16] and the adhesion of multiple proteins or other biomolecules
(e.g., bacteria) to the protein layer.

Antifouling is a process that prevents a surface from accumulating biomolecules.
Based on a mechanism of biofouling formation, the desired approach for blocking the
fouling process is coating or grafting surfaces to resist the creation of biofilms that are
initiated by proteins and microbes [17]. Since the discovery of tin-based compounds in the
late 20th century, these compounds have been widely developed to generate antifouling
coatings for ships [18]. However, since there is substantial evidence that tributyltin con-
tamination has an adverse impact on marine organisms (e.g., the deformation of oyster
shells), it is necessary to develop more biocompatible nonfouling strategies [19]. During the
past decade, various antifouling strategies have been developed to prevent biofouling, and
the modification of surfaces is important for minimizing biological responses [1,10,20–22].
Self-assembled monolayers (SAMs) have attracted attention for their applicability in sur-
face tailoring methods. The SAM technique, which involves the spontaneous formation of
ordered monolayer films on a surface, provides a powerful tool for tuning surface proper-
ties, such as wettability [23,24]. The procedure is straightforward, and a well-organized
surface is obtained, which has a variety of applications, including surface wetting [25],
adhesion [26], corrosion [27], electronic devices [28], and sensors [29]. Although several
types of antifouling surfaces have been developed for use on various substrates, the ma-
jority have focused on gold or silica [1,12,20,30]. As a surface modification method, SAMs
offer several attractive features for antifouling applications over other techniques. First,
the easy preparation and fabrication of chemical compositions on the surface are accessible
for a variety of antifouling applications, including medical equipment, biosensors, and
marine environments [20,31,32]. Second, the long-term durability of the monolayer, which
is created by chemisorption between headgroups and substrates, makes it possible to utilize
the devices in environments such as biological media. Moreover, N-heterocyclic carbene
(NHC)-based SAMs have recently exhibited high thermal, hydrolytic, chemical, oxidative,
and electrochemical stabilities, increasing their potential applicability for biosensing ap-
plications [33,34]. Third, mixed SAMs are useful tools that either resist the nonspecific
adsorption of proteins or promote the specific adsorption of proteins in the development of
biocompatible sensors [30]. Last, SAMs are well-defined and well-studied and are directly
feasible with a variety of techniques to analyze the thermodynamics and kinetics of binding
events [35,36].

A number of analytical techniques have been widely used to study adsorption events
on SAMs, such as surface plasmon resonance (SPR) spectroscopy [35–37], quartz crystal
microbalance (QCM) [35,36,38], and ellipsometry [35,36,39]. Surface plasmon resonance is
an optical technique that measures the changes in the index of refraction at the surface of
metal layers. This instrument enables either kinetic or thermodynamic information to be
acquired between artificial surfaces in a biological manner and in situ data to be collected in
real time with label-free analytes; in addition, the instrument is sensitive and commercially
available [20]. QCM uses the piezoelectric effect to detect the vibration frequency of quartz
crystals as protein adsorbs to the surface [40]. For the QCM experiments, the choice of
surface material is flexible and special precautions, such as optical reflectivity and tailored
substrate compositions, are unnecessary [41]. Ellipsometry is based on the change in
polarized light from the surface and the reflected light provides information about the
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amount of the adsorbed protein [42]. One of the main advantages is that ellipsometry does
not involve any labeling of materials and is also relatively inexpensive to maintain [43].

In this review, we describe a wide range of structural designs that are used for non-
fouling SAMs and the corresponding mechanism to clarify the interactions between films
and biomaterials. As outlined in Figure 1, the effects of the thin film surface, which is
hydrophobic and hydrophilic, on fouling adsorption as well as the surface, which has an
amphiphilic structure, are discussed. The study described in this review should inspire
researchers to understand and develop novel approaches for antifouling coatings in the
future. Key representative studies on the antifouling SAMs covered in this review are
summarized in Table 1.
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Figure 1. An overview of SAM coatings for antifouling. PEG: poly(ethylene glycol); OEG:
oligo(ethylene glycol).

Table 1. Key self-assembled monolayers for antifouling applications.

Antifouling
Approach Material Type Headgroup/Substrate Functional Group Detection Method Tested Fouling

Materials Ref.

Hydrophilic OEG

SH/Au –(OCH2CH2)3OH SPR, microscope

Fibrinogen,
lysozyme, S. aureus,
S. epidermidis, BCE

cells

[44]

SH/Au –
C(O)NH(CH2CH2O)6CH3

SPR

Fibrinogen,
ribonuclease A,

lysozyme, carbonic
anhydrase

[45]

SH/Au –(OCH2CH2)6OH Ellipsometry RNase A, pyruvate
kinase, fibrinogen [46]

SH/Au or Ag –(OCH2CH2)3OCH3 FT-IR Albumin, IgG,
fibrinogen [47]

SH/Au –(OCH2CH2)nOH
n = 2, 4 and 6 SPR Fibrinogen,

lysozyme, BSA [48]

SH/Au –(OCH2CH2)6OR
R = H or CH3

Ellipsometry

Fibrinogen,
pyruvate kinase,

lysozyme,
ribonuclease A

[49]

SH/Au

–(OCH2CH2)nOR
n = 1, 2, 3, 6 and R = H,

CH3, CH2CH3,
CH2CH2CH3

Ellipsometry Fibrinogen [50]
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Table 1. Cont.

Antifouling
Approach Material Type Headgroup/Substrate Functional Group Detection Method Tested Fouling

Materials Ref.

SH/Au –(OCH2CH2)3OH SPR

BSA,
β-galactosidase,

carbonic anhydrase
II, fibrinogen,
myoglobin,

ribonuclease A,
cytochrome c,

lysozyme

[51]

SH/Au –(OCH2CH2)3OH Microscope
S. epidermidis, P.
aeruginosa, 3T3

fibroblasts
[52]

SH/Au –(OCH2CH2)3OH SPR, microscope

Fibrinogen, pepsin,
lysozyme, insulin,

trypsin 3T3
fibroblast

[53]

SH/Au –C(O)NH(CH2CH2O)nR
n = 3, 6 and R = H, CH3

SPR Fibrinogen,
lysozyme [54]

Zwitterion

SH/Au

–
OP(O)2

−OCH2CH2N+(CH3)3
–

N+(CH3)2CH2CH2CH2SO3
−

SPR, microscope

Fibrinogen,
lysozyme, S. aureus,

S. epidermidis,
BCE cells

[44]

SH/Au –
OP(O)2

−OCH2CH2N+(CH3)3
QCM BSA, fibrinogen,

FBS [38]

SH/Au 1:1 mixture of –OPO3
− and

–N+(CH3)3
SPR Fibrinogen [55]

SH/Au

–SO3−

–N+(CH3)3
–

N+(CH3)2CH2CH2CH2SO3
−

–
OP(O)2

−OCH2CH2N+(CH3)3

SPR

BSA,
β-galactosidase,

carbonic anhydrase
II, fibrinogen,
myoglobin,

ribonuclease A,
cytochrome c,

lysozyme

[51]

SH/Au –
OP(O)2

−OCH2CH2N+(CH3)3
SPR Fibrinogen, BSA [56]

SH/Au –CH(N+(CH3)3)COO− Microscope
S. aureus, S.

epidermidis, 3T3
fibroblasts

[52]

SH/Au –CH(N+(CH3)3)COO− ELISA, microscope

BSA, lysozyme,
mucin, S. aureus, S.

epidermidis, 3T3
fibroblasts

[57]

Peptide-base
SH/Au Magainin I Microscope, AFM,

PM-IRRAS
L. ivanovii, E. faecalis,

S. aureus [58]

SH/Au Glutamic acid/lysine
peptide SPR Fibrinogen,

lysozyme [59]

Others

SH/Au Permethylated sorbitol SPR, microscope

Fibrinogen,
lysozyme, S. aureus,
S. epidermidis, BCE

cells

[44]

SH/Au Saccharide Ellipsometry,
microscope

Lysozyme,
fibrinogen, BSA,

pepsin, Ulva linza,
Balanus amphitrite

[60]

SH/Au Mannitol SPR, microscope

Fibrinogen, pepsin,
lysozyme, insulin,

trypsin 3T3
fibroblast

[53]

SH/Au Dendritic polyglycerol SPR Fibrinogen [61]

SH/Au Saccharide or sorbitol SPR Fibrinogen,
lysozyme [54]
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Table 1. Cont.

Antifouling
Approach Material Type Headgroup/Substrate Functional Group Detection Method Tested Fouling

Materials Ref.

Hydrophobic

-

Silane/SiO2 –(CF2)7CF3 Microscope Ulva linza [62]

SH/Au –(CH2)11CH3 Microscope N. europaea, N.
multiformis, E. coli [63]

Silane/SiO2
–(CF2)7CF3

–(CH2)7CH3

SDS-PAGE and
immunoblotting,

bicinchoninic acid
assay

Human saliva,
serum [64]

Silane/SiO2 –(CF2)5CF3 Microscope
Fibroblast cells,

embryonic
stem cells

[65]

SH/Au –(CH2)11CH3 SPR, microscope C. marina, M.
hydrocarbonoclasticus [66]

Silane/SiO2 –(CH2)17CH3 Microscope Fibroblasts [67]

Silane/SiO2
–(CH2)17CH3
–(CF2)5CF3

Microscope Astrocyte, Choroid
plexus, [68]

(CH2SH)2/Au
1:1 mixture of

–(CH2)8(CF2)7CF3 and
–(CH2)15CH3

Ellipsometry, QCM,
SPR

Protamine,
lysozyme, BSA,

fibrinogen
[35]

Amphiphilic
- (CH2SH)2/Au

1:1 mixture of
–(CH2)5(OCH2CH2)3OCH3

and –(CH2)15CH3

Ellipsometry, QCM,
SPR

Protamine,
lysozyme, BSA,

fibrinogen
[25,36]

SH/Au
1:1 mixture of

–(OCH2CH2)3OH and
–(CF2)7CF3

SPR, microscope
BSA, fibrinogen,
immunoglobulin,

Hela cell
[69]

Abbreviations: BCE: bovine capillary endothelial; IgG: immunoglobulin G; FT-IR: Fourier transform infrared
spectroscopy; BSA: bovine serum albumin; FBS: fetal bovine serum; ELISA: enzyme-linked immunosorbent assay;
AFM: atomic force microscopy; PM-IRRAS: polarization modulation infrared reflection–absorption spectroscopy;
OEG: oligo (ethylene glycol); SPR: surface plasmon resonance; QCM: quartz crystal microbalance.

2. Hydrophilic Antifouling SAMs

Remarkable progress has been made in self-assembled monolayers for antifouling
since Prime et al. pioneered the study of protein adsorption with SAMs on gold [46].
They demonstrated that the amount of protein adsorbed varied with the monolayers that
contained different terminal groups of adsorbates on the gold surface. This study demon-
strated that SAMs provide various surface properties depending on the molecules on the
substrate that are hydrophilic or hydrophobic; thus, SAMs are an effective system for
examining the relationship of proteins and surfaces regarding the mechanisms of these
interactions. The most common SAM system that has been studied for anti-adhesive coat-
ings involves increasing the surface hydrophilicity, which generates hydration layers as a
surface barrier [47,48]. The adsorbates for applying hydrophilic functionalization include
adsorbates with polyethylene glycol (PEG) [70], oligo (ethylene glycol) (OEG) [47–50,71],
zwitterion [38,51,52,55–57], peptide [58,59] and other hydrophilic materials, such as manni-
tol [53], saccharide [60] and polyglycerol [61].

2.1. PEG and OEG SAMs

PEG chains have been commonly used for antifouling coatings due to their biocompat-
ibility, nonimmunogenicity, nonantigenicity, and nontoxicity [72]. Although the detailed
mechanism of prevention is not fully understood, the most acceptable explanation of the
resistance to proteins by PEG is the steric repulsion between highly hydrated PEG and
biomolecules [73]. Once PEG is fully hydrated by water, the mobility or flexibility of the
immobilized chain on the surface increases. When biomaterials approach the hydrated
PEG layer, the biomaterials compress the PEG chains and then the repulsive elastic force
of PEG, which generates a higher entropy, prevents adsorption to the surface. Thus, the
entropy-driven steric effect is attributed to the antifouling mechanism of biomolecules from
PEG-coated surfaces.



Coatings 2022, 12, 1462 6 of 21

While PEG-based adsorbates have been widely used for antiadhesive coatings since
the early 1980s, OEG-based SAMs are useful as a nonfouling coating model to elucidate the
relationships between the surface and the adsorption of biomaterials because they are easy
to prepare and their topology can be controlled by varying the terminal group during the
synthesis of the precursor, which is nearly constant from sample to sample [49]. However,
unlike surface coatings with polymers, SAMs exhibit a high density of molecules on the
surface, and the antifouling property cannot be explained only via the steric repulsion
theory, as applied in the PEG coating [55]. When the protein approaches densely packed
SAMs that contain only a few ethylene oxide groups, it is clear that the steric repulsion is
lower than that of the PEG surfaces because the conformational freedom of the chain is
strained (Figure 2, left).
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Figure 2. Hydration of highly packed OEG (3–10 ethylene glycol units) SAMs (left) and flexible PEG
(>10 ethylene glycol units) polymer (right), which are implicit in protein resistance [30]. Copyright
2020 American Chemical Society.

Instead, the interfacial water that strongly binds to the molecule plays a critical role
in the resistance to biomaterials. The polar groups on the surface form a hydration layer
via hydrogen bonding. Adsorbing biomolecules to this surface simply involves the discon-
nection of hydrogen bonds between water and the surface followed by replacement with
the functional groups of biomaterials; this process is not thermodynamically favorable [74].
From this point of view, researchers have focused more on the importance of the water
layer in hydrophilic SAMs and their resistance to protein adsorption. Whiteside et al.
reported a study of the adsorption of four proteins to SAMs on gold [49]. In this pioneering
work, SAMs derived from thiols of HS(CH2)10CH3 and HS(CH2)11(OCH2CH2)nOR, in
which n = 0–17 and R = H or CH3, were tested to investigate the effects of the length
and number of ethylene oxide (EG) groups on protein resistance. The data showed that
relatively densely packed SAMs with a few EG units (at least two EG units) effectively
resist protein adsorption and concluded that the steric repulsion theory does not critically
contribute when attempting to fully understand protein resistance. This observation clearly
demonstrated that SAMs could cover a large number of chains per unit surface area with
shorter chain lengths than those of other techniques for antifouling purposes.

Moreover, subsequent studies demonstrated that the protein resistance of OEG SAMs
is attributed to their molecular conformation, which provides a repulsive hydration layer
between the solvated hydrophilic chain and the biomaterials [47,50,71,75]. Feldman et al.
investigated the electrostatic repulsive forces that act toward EG3OMe SAMs with a protein
immobilized AFM probe in buffer solutions [71]. They demonstrated that electrostatic
repulsion was generated toward the film of EG3OMe on gold when the fibrinogen attached
AFM tip was approaching, while no electrostatic repulsion occurred with the film on Ag;
instead, there was strong adhesion between the film and protein. Harder et al. supported
the idea that the repulsive force between protein and OEG-based alkanethiol SAMs on gold
or silver contributes to the molecular conformation of OEG moieties [47]. FTIR spectra
demonstrated that the methoxy-terminalized OEG (3 EG units) films have helical and
amorphous structures on gold, which was found to have a higher fibrinogen resistance,
while the OEG film on silver contains all-trans conformations and adsorbs fibrinogen.
The conformation of the OEG-terminated alkanethiol film can be explained by the lateral
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spacing of the alkane chains. Due to the tilt of the alkane chains, the OEG forms a helical
conformation on gold, while the alkane chains are almost perpendicular to the surface, and
the OEG units have trans conformations as a consequence (Figure 3).
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The researchers assumed that the conformation of OEG consequently affects the stabil-
ity of an interfacial water layer and protein adsorption. Moreover, Herrwerth et al. clearly
demonstrated that the combination of terminal and internal hydrophilicity and the lateral
packing density are the key factors in determining protein resistance [50]. Oligo(ethylene
glycol), oligo(propylene glycol), and oligo(trimethylene glycol)-terminated alkanethiols
with different chain lengths were tested as adsorbates. The packing density, surface hy-
drophilicity, and chain conformation of the SAMs were examined by XPS, contact angle,
and infrared reflection absorption spectroscopy (IRRAS), respectively. The results showed
that: (1) hydrophobic units, such as oligo(propylene glycol), barely affect protein resistance,
highlighting the importance that the SAMS are accessible to water; (2) the lateral high
packing of oligo(ethylene glycol) SAMs on silver contributes to low protein resistance; and
(3) water contact angles greater than 70◦ reduce protein resistance. Similar to experimental
efforts, molecular simulation data have also supported the importance of the hydration
layer [75,76]. The grand canonical Monte Carlo simulation results demonstrated that water
penetrates well through the helical SAM of EG3OMe on gold due to its lower areal density,
leading to the formation of water layers with a large number of water molecules at the
surface, while water can barely penetrate the conformationally ordered films on silver,
enhancing protein adsorption.

2.2. Zwitterionic SAMs

Zwitterionic materials are materials that have both cationic and anionic moieties on
the same monomer unit [77]. Since zwitterionic materials can bind water molecules tightly
via strong electrostatic interactions, while hydrophilic PEG/OEG molecules form hydration
via hydrogen bonds on the surface, it is expected that zwitterionic materials with strong
ionic solvation can be potential candidates for nonfouling applications [78,79]. Moreover,
due to their antifouling properties and biocompatibility [80], zwitterionic materials are
a new class of protein resistance materials [51,56,57]. Holmlin et al. demonstrated the
ability of SAMs that contain zwitterionic groups in different combinations to resist the
adsorption of proteins [51]. In their studies, the researchers provided different kinds
of adsorbates deposited on gold and utilized fibrinogen and lysozyme adsorption with
each SAM as follows: (1) single-charged SAMs (all positive or all negative as shown in
Figure 4C,D) exhibited no resistance of adsorption to proteins, (2) the films generated from
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a 1:1 mixture of negatively and positively terminated thiols (Figure 4E) clearly exhibited
resistance to nonspecific protein adsorption, which is comparable to the data from OEG-
based SAMs, and (3) single-component SAMs formed from thiols possessing both positive
and negative charges in one molecule (Figure 4F) enabled good resistance to the adsorption
of proteins (Figure 4).
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These results demonstrated that one of the prerequisites for zwitterionic SAMs to
exhibit protein resistance is electrical neutrality. Jiang et al. also reported the strong
resistance of phosphorylcholine (PC) SAMs to protein adsorption using both experimental
and molecular simulation techniques [56]. The generated zwitterionic PC SAMs were
evaluated with the adsorption of fibrinogen and BSA. PC SAMs are highly resistant to
proteins according to the SPR data; the amount of adsorption to the surface was 0.03 mg/m2

and 0.01 mg/m2 for fibrinogen and BSA, respectively. The researchers stated that the key
factors resulting in a strong resistance of zwitterionic SAMs included minimized dipole
interactions and balanced charges. Based on the XPS spectra, the PC SAMs had negative
and positive charges at a 1:1 ratio and these SAMs exhibited a higher antifouling with
fibrinogen compared to that of the SAMs at a ratio of 0.87:1. Furthermore, the molecular
simulation results showed that the orientation of the PC headgroups is parallel to the gold
surface and that the headgroups favor an antiparallel orientation to each other to minimize
the net dipole moment, as shown in Figure 5.

This conformation was supported by the experimental data. The thicknesses of the
PC SAMs were measured by ellipsometry and AFM and were 9 Å and 14 Å, respectively,
which is significantly lower than the expected thickness of PC SAMs (21 Å). Therefore, it is
expected that the orientation of the PC headgroups lies perpendicular to the surface normal.
In 2015, Huang et al. developed an L-cysteine-derived zwitterionic molecule (L-cysteine
betaine) and investigated the antifouling properties of the corresponding SAMs [57]. In
contrast to L-cysteine (Cys), L-cysteine betaine (Cys-b) has a durable zwitterionic form from
pH 3.4 to 10.8 and the quaternization of the amine group efficiently reduces photoinitiated
oxidization (Figure 6). The researchers conducted fouling resistance tests with SAMs
from Cys and Cys-b on gold in bacteria, proteins, and mammalian cells. For the bacterial
resistance test, the film generated from Cyc-b showed higher antifouling properties even
after photooxidation, while Cys SAMs adsorbed a higher number of bacteria (Figure 6, left).



Coatings 2022, 12, 1462 9 of 21

Moreover, the results demonstrated the greater ability of the Cys-b-coated surfaces to resist
the adsorption of mucin, lysozyme, and BSA compared to the Cys SAMs (Figure 6, middle).
The study of the adhesion of mammalian cells also indicated that NIH 3T3 cells adsorbed
more on Cys-based SAMs than on Cys-b SAMs (Figure 6, right). The higher antifouling
system of Cys-b SAMs can be rationalized by the fact that the association of quaternary
ammonium and carboxylate groups is attributed to strong hydration, low self-association
of ionic groups, and low electrostatic attraction to proteins according to the molecular
simulation study [81].
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2.3. Peptide-Based SAMs

Given that peptides are biocompatible and can exhibit a variety of characteristics,
including hydrophilicity, charge, conformational rigidity, anchoring ability, and facile func-
tionalization with specific sequences, peptide-based SAMs represent a promising class
of antifouling coatings [82]. Several approaches have recently been studied for this pur-



Coatings 2022, 12, 1462 10 of 21

pose, including the use of antimicrobial peptide agents [58] and zwitterionic peptides [59].
Humblot et al. reported a study of the antibacterial surface of peptide Magainin I [58].
Antimicrobial peptides, which are produced by plants, insects, mammals, and microor-
ganisms, provide a wide spectrum of activity against bacteria and other pathogens at low
concentrations. In these studies, Magainin I, an antimicrobial peptide, was immobilized on
a gold surface by co-adsorption with a binary mixture of thiol 11-mercaptoundecanoic acid
and 6-mercaptohexanol followed by a coupling reaction with N-hydroxysuccinimide in the
presence of a carbodiimide reagent (Scheme 1).
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Three gram-positive bacteria (L. ivanovii, E. faecalis, and S. aureus) were deposited on
Au-MUA-MAG (Magainin I modified film) or Au-MUA (without Magainin I) at 37 ◦C
for 3 h. The surface modified with Magainin I (Au-MUA-MAG) effectively inhibited the
adhesion of each gram-positive bacterium, preventing 80% of L. ivanovii cell attachment
compared to that of the untreated surface (Au-MUA). Moreover, the antibacterial activity
of the Margainin-functionalized surfaces persisted even after 6 months. The researchers
suggested that Magainin induced the formation of pores in the lipids of targeted cell
membranes, leading to microorganism cell lysis and they confirmed the observation that
the adhered bacterial cell surface deteriorated with the collapse of cell walls. Zwitterionic
peptides can provide another way to prevent biofouling, as water molecules are strongly
bound via electrostatic interactions with peptide residues [77]. Nowinski et al. reported an
ultralow fouling monolayer on a gold surface with alternating negatively charged glutamic
acid (E) and positively charged lysine (K) residues [59]. The structure of SAMs in this
study was composed of (1) a cysteine (C) residue as an anchor to bind gold, (2) four proline
(P) linker residues, which provide hydrophobicity and helical secondary structure, (3) an
alternating glutamic acid (E) and lysine (K) sequence to form a strong hydration layer
and (4) an arginine–glycine–aspartate (RGD) sequence mimicking extracellular matrix
proteins as a biomolecular recognition (Figure 7). To compare the impact of rigid and
hydrophobic proline linker (EKEKEKE-PPPPC), the researchers used the flexible and
hydrophilic glycine residue as a linker (EKEKEKE-GGGGC) as well as the linker-free
peptide (EKEKEKE-C). SPR data show that the fouling of fibrinogen to the EKEKEKE-
PPPPC SAMs is 4.4 ± 2.9 ng/cm2, while it is 17.9± 11.4 ng/cm2 for the EKEKEKE-GGGGC
SAMs and 38.3 ± 2.9 ng/cm2 for the EKEKEKE-C SAMs. To study the different amounts of
fouling in greater depth, the researchers examined the secondary structure of each peptide
in solution using circular dichroism (CD), molecular dynamics (MD) simulations, and
attenuated total internal reflection Fourier transform IR spectroscopy (ATR-FTIR). The CD,
MD, and ATR-FTIR data supported that the proline linker contained an extended and rigid
helical structure, allowing peptide chains to pack well with each other, while the linker-free
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(EKEKEKEKE-C) and glycine linker (EKEKEKEKE-GGGGC) peptides exhibited disordered
structures, compromising their antifouling properties.
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2.4. Other Hydrophilic SAMs

In 2001, Ostuni et al. investigated SAMs that contain different functional groups
and their protein resistance via SPR [54]. In these studies, the functional groups, which
showed acceptable results for the prevention of protein adsorption, exhibited the following
molecular-level characteristics: (1) the group is hydrophilic, (2) the group includes hydrogen
bond acceptors but does not have hydrogen bond donors, and (3) the overall electrical
charge is neutral. In particular, the researchers used multiple amine functional groups,
such as glycine and sarcosine, and replaced one of the hydrogen atoms on the amino
group with a methyl group to test the effect of hydrogen donors on protein resistance; the
substitution reduced protein adsorption to the surface. However, a molecular exception to
these general requirements was reported [53,61]. Specifically, in 2000, Luk et al. reported
that mannitol-terminated SAMs are remarkably effective for producing inert surfaces
against protein adsorption and cell adhesion [53]. The authors generated films possessing
terminal mannitol groups (Figure 8, surface 2) that were comparable to OEG monolayers
(Figure 8, surface 1) in repelling five proteins, including fibrinogen pepsin, lysozyme,
insulin, and trypsin. Moreover, the mannitol SAMs maintained good anti-adherent of
cells over 25 days, while the OEG SAMs failed after 7 days. Molecular simulation results
suggest that mannitol SAMs are tightly bound with water and that the hydration layer
generated a strong repulsive force on the approaching proteins despite the presence of
hydrogen bond donor groups [83]. Along with the mannitol group, Siegers et al. also
studied the nonspecific protein adsorption of dendritic polyglycerol SAMs, which contain
several hydrogen bond donors [61]. The dendritic polyglycerol SAMs exhibited an effective
inertness to fibrinogen adsorption compared to that of the OEG SAMs and showed more
protein resistance than that of a commercially available dextran-based sensor chip. In
addition to their antifouling ability, dendritic polyglycerols also exhibited higher thermal
and oxidative stability than PEG. Dendritic polyglycerols contain the following structural
features that are typical of protein-resistant surfaces: (1) hydrophilic repeating units, which
are water-soluble, and (2) a very flexible branched structure, which leads to high protein
resistance (Figure 8). Excellent resistance against protein absorption was observed with
those features, even though molecules with hydrogen bond donor OH groups were opposed
to the general rule for the inert surfaces.
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3. Hydrophobic Antifouling SAMs

There are two general strategies by which surface modification inhibits biomaterial ad-
sorption: (1) prevention of biomaterial attachment and (2) detachment of biofoulants [84]. In
the strategy involving the prevention of biomaterial attachment, settlement of biomolecules
on the surfaces is avoided such as using a strong hydration barrier as we discussed above.
On the other hand, the strategy involving the detachment of biofoulants provides only a
weak connection between the surface (mainly the hydrophobic surfaces) and the biomateri-
als. Thus, the goal of the strategy is to reduce adhesion by removing the settled organisms
from the surface using stresses such as the hydrodynamic flow caused by ship movements.
Removing marine organisms from hydrophobic surfaces has a strong relationship with
the low surface energy of materials. The correlation between the relative adhesion of
biomaterials and the surface energy of the polymer was reported by Baier [85]. The Baier
curve has been used to depict the degree of biofouling adhesion as a function of the critical
surface tension (Figure 9).

Critical surface tension corresponds to the surface tension of a liquid that perfectly
wets the solid surface, as introduced by Zisman [86]. Baier’s empirical study stated that the
material’s critical surface tension must be between 20 and 30 mN/m, which is efficient in
preventing the adhesion of marine biofoulants. A possible explanation was provided by
Scharader based on the Good–Girifalco–Fowkes theory [87]. He explained that the excess
dispersion forces stem from the solid surface in the high critical surface tension range
(above 22 mN/m) and the forces also originate from the liquid surface in the low critical
surface tension range (below 22 mN/m). Thus, both excess dispersion forces of the solid
and liquid result in an increase in the total interaction at the interface. When the critical
surface tension is equal to 22 mN/m, which is the same as the dispersive component of
the surface tension of water, the dispersion force is zero and the total interfacial force is
minimal. The surfaces with low critical surface energy values are typically closely packed
with methylated materials and polyvinylidene fluoride (PVDF). The low surface energies
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on those polymers emanate from the exposed CH3 and CF3 moieties at the interfaces.
The surface energy of hydrophobic moieties decreases in the following order: −CH2 (36
mN/m) > −CH3 (30 mN/m) > −CF2 (23 mN/m) > −CF3 (15 mN/m) [84]. Thus, closely
packed alkyl or perfluoroalkyl groups on surfaces minimize the surface energies, reducing
molecular diffusion and rearrangement when exposed to biomolecules.
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However, research on the adsorption of biomolecules to polymer substrates has been
difficult and ambiguous, especially regarding the definition of the surface and fouling
interactions at the molecular level because it is difficult to limit the region of the surface
interacting with biomolecules [88]. Consequently, there are increasing applications of SAMs
in antifouling areas via a systematic change in surface energy, allowing reproducible results
on functionalized surfaces [62–64,89]. Moreover, hydrophobic SAMs generated by alkyl- or
perfluorinated chains offered an efficient way to prevent protein [64,65], bacterial [63,66],
and cell [62,67,68] adhesions. In particular, BSA adsorption on perfluorooctyl-terminated
SAMs is approximately 78% of that on glass substrates [65]. The amount of adsorbed saliva
is as low as <20 ng/cm2 for CH3- and CF3-terminated SAMs, compared to 50 ng/cm2

for NH2- and SO3H-terminated SAMs [64]. For serum proteins, very small amounts of
adsorbed proteins were measured for CH3- and CF3-based thin films and those values are
similar to the adsorbed proteins on PEG SAMs [64]. Furthermore, CH3 SAMs showed a low
attachment rate against two autotrophic ammonia-oxidizing bacteria (Nitrosomonas europaea
and Nitrosospira multiformis) and a heterotroph (Escherichia coli) [63]. 1-Hexadecanethiol
SAMs and (11-mercaptoundecyl)hexa(ethylene glycol) SAMs exhibited the highest resis-
tances to M. hydrocarbonoclasticus and C. marina adhesion among six different kinds of
organo-sulfur compound-based SAMs [66]. These studies found that Ulva spores were less
spread over the surfaces of hydrophobic CH3-alkanethiol and CF3 monolayers compared
to that of hydrophilic OH-alkanethiol SAMs [62]. The attachment of fibroblast cells that
adhered to CH3-terminated SAMs was weak and similar to that of PEG and OH SAMs [67].
Following the same trend, fluoroalkylsilane SAMs significantly reduced astrocyte and
choroid plexus proliferation, while hydrophilic biopolymer-coated surfaces (heparin and
hyaluronan) increased cell growth [68].

Recently, St. Hill et al. reported antifouling thin films that were generated from
unsymmetrical and partially fluorinated spiroalkanedithiols on gold [35]. To study protein
adsorption on the interfacially conflicted monolayers, the researchers generated SAMs from
mixed spiroalkanedithiols that were unsymmetrical and partially fluorinated, including
F8H10-C12 and F8H10-C18, and compared them to SAMs that were generated from single
component adsorbates, n-alkanethiol and partially fluorinated alkanethiol (Figure 10). The
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antifouling performance was evaluated with four proteins, including protamine, lysozyme,
BSA, and fibrinogen, using not only ex situ ellipsometric thickness and electrochemical
QCM measurements but also in situ surface plasmon resonance spectroscopy (SPR). The
SPR and QCM data indicated that protein adsorption was more resistant with the thin
films with hydrocarbon/fluorocarbon mixed bidentate adsorbates on gold than with single-
component SAMs. The improved resistance to protein adsorption for the two-phase
incompatible hydrocarbon and fluorocarbon mixed surfaces can be rationalized by their
unnatural compositions that are not found in nature.
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4. Amphiphilic Antifouling SAMs

Considering that hydrophilic coatings via SAMs prevent the adsorption of proteins
and attachment of bacteria and marine organisms [38,47–53,55–57,59–61], and that hy-
drophobic SAM surfaces are able to release biomaterials [62–68] as shown through previous
studies, the SAM technique is truly a useful strategy for designing effective antifouling
coatings. PEG/OEG or zwitterionic molecules are among the most widely used hydrophilic
materials and the surfaces generated from those compounds contain water molecules
via hydrogen bonding or electrostatic force, leading to strong hydration layers and a
thermodynamic advantage for biomolecule resistance. Despite their excellent antifouling
performance, PEG and OEG moieties lack long-term stability and are vulnerable to oxi-
dation [54]. Moreover, OEG SAMs showed quite extensive adsorption of proteins from
blood plasma and serum [90], and zwitterionic SAMs could not reduce the attachment of
S. aureus and S. epidermidis [44] even though both types of SAMs greatly reduced single-
component protein adsorption. In addition, hydrophobic surfaces composed of CH3- or
CF3-terminated monolayers readily released organisms by weakening the adhesion of
foulants to surfaces due to their low surface energies, facilitating the removal of attached
biomaterials. On the other hand, it is interesting that for the hydrophobic CH3 SAMs, a
very low attachment of P. aeruginosa was observed, while attachment of S. epidermidis on the
hydrophobic CH3 terminated surface was much higher than that on glass substrates [91].
In the blood incubation experiments, no leukocytes were observed on CH3-terminated
SAMs, although many strongly deformed platelets were attached to this surface [92].

Indeed, the adsorption of proteins, bacteria, and cells are affected not only by the
surface properties (e.g., hydrophobic or hydrophilic), but also by the kind of biomate-
rials adsorbed [42,93]. For example, proteins are complex biocompounds composed of
~20 amino acids with possible additional side chains, such as phosphates, oligosaccharides,
or lipids. Due to this functional complexity and diversity, it is difficult to make simple judg-
ments to understand the adsorption process fully; lipoproteins are structurally labile and
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thus have conformational reorientations, which are readily adsorbed to the hydrophobic
surface, while a high content of hydrophilic glycans on glycoproteins adsorb extensively
on hydrophilic surfaces and sparsely on hydrophobic surfaces [42]. Moreover, marine
organisms, including shells (barnacles, mussels, and bryozoans) and soft-fouling species
(tunicates, macroalgae, hydroides, slime, diatoms, and bacteria), can attach to surfaces in
many forms, and the adhesives used by these organisms are equally varied [93]. Hence,
such a variety of biomaterials, which are involved in the complex attachment and adhesion
processes, have inspired the development of new antifouling coatings. The general idea
of amphiphilic coatings is to include on one surface both nonpolar and hydrophilic moi-
eties to reduce polar interactions with biomolecules in combination with the well-known
“detachment of fouling” approach of hydrophilic groups. This chemical ambiguity or
heterogeneity may lower the entropic and enthalpic driving forces for the adsorption of
protein and glycoprotein organisms, which exhibit amphiphilic characteristics [94].

Recently, Chinwangso et al. developed and characterized the properties of thin films
that are composed of chemically disparate species [25]. In the study, new unsymmetrical
spiroalkandithiol adsorbates having within one molecule a chain possessing three EG units
and another chain possessing an alkyl group. These adsorbates were designed to overcome
the issue of phase separation that was generated from the co-adsorption of two separate
monodentate adsorbates (Figure 11).
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Moreover, the same research group examined the protein resistance of the unsymmet-
rical spiroalkanedithiol monolayers and compared the antifouling performance with the
mono-alkanethiol and OEG-terminated alkanethiol SAMs using ellipsometric measure-
ments. The results showed that the SAMs derived from double chains (EG3C7-C7 and
EG3C7-C18) exhibited a moderate ability to inhibit fibrinogen adsorption but were not
superior to EG3C7SH films [36]. Gudipati et al. first introduced an amphiphilic coating
that was composed of hyperbranched fluoropolymer (HBFP) and PEG prepared on a self-
assembled 3-aminopropyltriethoxysilane-functionalized microscope glass slide [95]. The
behavior of HBFP-PEG coatings against the adsorption of proteins and lipopolysaccharides
(bovine serum albumin (BSA), a lectin from Codium fragile (CFL), and lipopolysaccharides
from E. coli (LPSE) and Salmonella minnesota (LPSS)) was investigated and compared with
HBFP and PEG surfaces. The adsorption amounts of BSA and CFL were higher on the
HBFP surface than on the PEG coating, while 100% surface coverage of LPSE and LPSS was
achieved on the PEG coating and less than 20% coverage was observed on the HBFP surface.
Interestingly, the amphiphilic HBFP-PEG coating was the most effective in repelling both
protein and lipopolysaccharide adsorption.
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In 2013, Li et al. studied the protein adsorption and cell adhesion of binary SAMs
composed of perfluoroalkyl (PFA) and OEG alkanethiols (Figure 12) [69]. In the study,
the adsorptions of three proteins (BSA, Fib, and IgG) on SAMs with different PFA/OEG
ratio compositions were characterized by SPR (Figure 13 left). The three proteins exhibited
similar behaviors on the surfaces and the data showed that the adsorption of proteins on
the surface that was composed of 38% PFA was the most effective resistance (<5 ng cm−2).
Based on the results, it was proposed that the hydrophobic portions of the 38% PFA surface
fail to match the hydrophobic patches on the protein, whereas the hydrophobic portions
of the 74% PFA surface match well with those of the proteins. In addition to protein
adsorption, HeLa cell adhesion after 24 h on the SAMs was investigated with an inverted
fluorescence microscope (Figure 13 right). The number of adhered cells on the 38% PFA
film was extremely small compared to the surface of the 74% and 85% PFA SAMs, which
corresponded well to the data on protein adsorption.
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5. Conclusions and Perspectives

The advance of antifouling coatings using SAMs on gold and silica surfaces against
biomaterials has undergone significant progress in several decades. With this review, an
attempt was made to briefly summarize the construction of antifouling surfaces, their
characterizations, and their biomaterials resistance mechanisms based on their surface
properties: hydrophobic, hydrophilic, and binary amphiphilic properties. The formation
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of monolayers from hydrophilic moieties (such as OEG, zwitterion, or peptide) is un-
doubtedly a common approach to inhibit biofouling relying on a strong hydration layer.
Furthermore, hydrophobic SAMs have been widely used for the fouling release method
due to their low surface energy property. However, a single component of a surface coating
with only hydrophobic or hydrophilic molecules might not be efficient for addressing all
environmental complexities. Thus, the mixed hydrophobic/hydrophilic coating can be a
promising candidate as an antifouling coating by adapting both antifouling and fouling
release approaches. In this respect, our research group has investigated the generation
of SAMs composed of phase-incompatible chemical moieties or other types of dissimi-
lar molecular structures using bifunctional moieties [23–25,35,36,57,96–98]. These newly
developed molecules, the use of thermally, hydrolytically, chemically, oxidatively, and
electrochemically stable N-heterocyclic carbene headgroups [33,34,99], and innovative
SAM-based strategies will undoubtedly pave the way for advances in surface modification
for antifouling applications.
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