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Abstract: Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material
science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism,
half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geome-
tries, and nanoarchitectures have been synthesized, and the related properties have been studied
with targets in multiple fields of applications, including biomedical devices, electronic devices, envi-
ronmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties,
and functionalities is an important task that determines the performance of Fe3O4 NPs in many
applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures,
synthesis, magnetic properties, and strategies for functionalization, which jointly determine the ap-
plication performance of various Fe3O4 NP-based systems. We first summarize the recent advances
in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We
also highlight the importance of synthetic factors in controlling the structures and properties of NPs,
such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging
applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a
focus on applications in biomedical technologies, biosensing, environmental remedies for water
treatment, and energy storage and conversion devices.

Keywords: Fe3O4 nanoparticles; magnetic properties; core–shell structures; nanocomposites; surface
functionalization; biomedical applications; biosensing; environmental applications; energy storage

1. Introduction

Magnetic nanoparticles (MNPs) are an interesting class of nanomaterials that have
been extensively explored for use in many technological applications [1–5]. MNPs have
been utilized in sensing technologies, memory storage devices, magnetic separation, mag-
netic labeling, and catalytic processes [6–9]. In biomedical applications, MNPs have been
used to induce heating for hyperthermia treatments, to provide contrast effects for magnetic
imaging, and for the remote control of targeted drug delivery [10,11]. Among magnetic
materials, iron oxide NPs are promising nanomaterials due to their great biocompatibil-
ity [12,13]. The biocompatibility of iron oxide NPs is the main driving force of substantial
research efforts to commercialize these NPs for advanced medical technology applica-
tions [14]. Although numerous iron oxides are known, the term “iron oxides” typically
refers to three types: Fe3O4 (magnetite), α-Fe2O3 (hematite), and γ-Fe2O3 (maghemite) [15].
Among all iron oxides, Fe3O4 has attracted more attention due to its superior magnetic
properties. In the last two decades, research on Fe3O4 NPs has achieved remarkable
progress in not only the synthesis of homogeneous core magnetic Fe3O4 NPs but also the
preparation of advanced nanoarchitectures (core–shell, composites, functionalized surfaces,
etc.) and the application of these nanomaterials in various fields [16–19]. According to the
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Web of Science, more than 41,000 research papers with the keyword “Fe3O4” have been
published in the last 20 years, as shown in Figure 1. In the last 10 years, the number of these
publications has increased drastically, with several hundred papers published per year.
These numbers reflect the great attention given to Fe3O4 nanomaterials by the research
community in both fundamental studies and applied science.
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is also used for Fe3O4, which indicates that it exhibits magnetic properties in the absence 
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Fe3O4 has attracted more attention than other iron oxides or ferrite spinel oxides
(MFe2O4 with M = Co, Ni, Mg, etc.) because of its superior magnetic properties, electronic
conductivity, and biocompatibility. The magnetic properties of Fe3O4 can be explained by
its crystal structure. Magnetite has a cubic inverse spinel crystal structure consisting of Fe2+

cations occupying 25% of the octahedral interstitial sites and Fe3+ cations occupying 25% of
the octahedral sites and 12.5% of the tetrahedral sites, and thirty-two O2− anions in its unit
cell [20,21]. The magnetic moments of Fe3+ and Fe2+ cations in octahedral holes are coupled
ferromagnetically. However, the Fe3+ ions in tetrahedral sites possess magnetic dipoles in
the reverse direction of the Fe3+ ions in the octahedral sites. Therefore, Fe3O4 is a ferrimag-
netic material with high saturation magnetization (MS) and low coercivity (HC) due to the
antiferromagnetically coupled Fe3+ cations in tetrahedral and octahedral sites of its crystal
structure. Sometimes, the term ferromagnetic properties or ferromagnetism is also used for
Fe3O4, which indicates that it exhibits magnetic properties in the absence of a magnetic
field. Regarding other iron oxide phases, maghemite is also a ferrimagnetic material, and
hematite is considered a weak ferromagnetic material. The maximum values of saturation
magnetization (MS) for magnetite (Fe3O4) and maghemite (γ-Fe2O3) are 98 emu/g and
82 emu/g, respectively [10], whereas the values for saturation magnetization of hematite
(α-Fe2O3) are usually modest and reported to be approximately 2 to 4 emu/g [22–24]. In the
case of spinel ferrite MFe2O4, the maximum saturation magnetization values for CoFe2O4,
NiFe2O4, and MgFe2O4 are 94 emu/g, 56 emu/g, and 31 emu/g, respectively [10]. Regard-
ing biocompatibility, Fe3O4 and γ-Fe2O3 have been used in various formulations approved
by the USA Food and Drug Administration (FDA) as a therapy for iron deficiency and as
contrast agents for magnetic resonance imaging [14,25,26]. Magnetite (Fe3O4) also exhibits
better electronic conductivity than other magnetic oxides in the same category due to its
half-metallic nature with room temperature conductivity σ = 200 (Ω·cm)−1 [27,28]. In
contrast, maghemite and hematite are semiconductors with bandgaps of approximately
2.0 eV, which are certainly less conductive than half-metallic materials [15,29]. Other spinel
ferrites MFe2O4 are also mostly semiconductors [30,31]. In addition, Fe3O4 possesses the
first-order transition of the Verwey transition (metal–insulator transition) at approximately
115–124 K, while this property is absent in maghemite [19,32]. Due to the Verwey transition
properties, Fe3O4 is potentially very useful in various physical device applications. Other
advantageous properties of Fe3O4 are its high electrochemical activity and high theoretical
capacity, which are important for energy storage device applications [33]. In addition to
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these main properties, the natural abundance, inexpensiveness, and ecofriendliness are
additional advantages that allow large-scale applications of Fe3O4-based NPs.

Numerous efforts to summarize progress in the synthesis, functionalization, nanoar-
chitectures, and applications of Fe3O4-based NPs have been reported. Several reviews
have highlighted the use of iron oxide NPs (magnetite and maghemite) in biomedical
applications [34–36]. The bioinspired synthesis and green biosynthesis of magnetite NPs
have been summarized by Mirabello et al. [37] and Yew et al. [38]. Although the growth
mechanism of Fe3O4 nanostructures and their applications were reviewed by Hou and
coworkers in 2011 [17], numerous advances in the field have been achieved in the last
10 years. Other reviews have focused on special physical properties or effects, such as
the Verwey transition [19] and exchange bias effects [16], which provide opportunities
to integrate Fe3O4 NPs in electronic devices and physical instruments. Recently, Siregar
et al. highlighted the use of Fe3O4 nanostructures in pollutant gas sensor systems [39],
and Liu et al. reviewed synthetic methods and applications of Fe3O4 in multiple fields [18].
Despite the numerous available reviews, a comprehensive review focusing on the rela-
tionship of sizes and shapes (geometries) with the magnetic properties of Fe3O4 NPs,
synthetic methods targeting each specific size and shape of Fe3O4 NPs, and preparations
of appropriate nanoparticle systems for targeted applications is still needed [40–44]. We
envision that the size-property and geometry-property relationships are very important
factors contributing to the performance of Fe3O4 NPs in most applications. Therefore, this
review will focus on the following problems:

(i) Synthetic methods to control the structures of Fe3O4 NPs with a focus on the sizes
and geometries;

(ii) Size- and geometry-to-magnetic property relationships of Fe3O4 NPs;
(iii) Effects of size, geometries, and properties of NPs on target applications;
(iv) Roles of functionalization and nanoarchitectures of Fe3O4 NPs in target applications.

We elucidate the solutions to these problems by first summarizing synthetic methods
to obtain different nanostructures of Fe3O4 and their magnetic properties. In particular,
the syntheses of various sizes of spherical, cubic, nanorod, 2D nanoplate (hexagonal and
triangular shapes), hollow, and multipod nanocrystal Fe3O4 NPs are summarized together
with their magnetic properties, including saturation magnetization and coercivity. In
this section, synthetic strategies to tailor the size and morphology of NPs are mainly
discussed. Next, we discuss the need to combine various characterization techniques
to study Fe3O4 NPs. Then, we will highlight the use of Fe3O4-based NPs in emerging
applications, such as biomedical applications (hyperthermia, MRI contrast agents, and
drug delivery), biosensing, environmental applications for the removal of heavy metals
and organic pollutants, and applications in energy storage devices. In this section, we will
focus on the effects of the sizes, geometries, and thus magnetic properties of NPs, as well
as the important roles of functionalization in enhancing the performance of Fe3O4 NPs in
these applications. Figure 2 illustrates the scope of this review.
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2. Structures, Synthesis, and Magnetic Properties of Fe3O4 Nanoparticles

Fe3O4 NPs exhibit either superparamagnetic (SPM) or ferrimagnetic (FM) behavior.
Figure 3a shows examples of magnetization curves of the SPM curve (green) and FM
hysteresis loop (orange color) of magnetic NPs represented by the magnetization value
(emu/g) versus the applied magnetic field (Oe). In the presence of an external magnetic
field, the magnetic material is magnetized and reaches a saturated value of magnetization
called “saturation magnetization” (MS), which is the highest value of magnetization that
the material can achieve. In addition to MS, the hysteresis curve of FM materials also
exhibits coercivity (HC) and remnant magnetization (MR) values, which indicate how
difficult the materials are to demagnetize and how much magnetization is retained in the
absence of an applied magnetic field, respectively. For SPM NPs, HC and MR are equal to
zero. Consequently, SPM materials do not exhibit magnetic properties without an applied
magnetic field; however, they respond magnetically in the presence of an external magnetic
field. SPM NPs have several advantages, such as preventing the agglomeration of NPs
(caused by magnetic attraction) and a sensitive response to a remote-controlled magnetic
field. In contrast, FM materials exhibit a certain magnetization value in the absence of
an external magnetic field. Therefore, FM NPs always retain strong magnetic properties,
which are potentially useful for applications that always require the existence of strong
magnetic properties/signals.
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At the nanoscale, Fe3O4 nanoparticles have different magnetic properties that are
influenced by their structures, including size, morphology, crystallinity, and surface prop-
erties [2,42,45,46]. These parameters are strongly affected by the synthetic methods and
chemicals used in their syntheses, such as iron precursors, surfactants, reducing agents,
and solvents. Thus, the appropriate selection of a method to synthesize Fe3O4 NPs is
very important to ensure the success of their applications. In the scope of this review, we
focus on analyzing the magnetic features of Fe3O4 NPs at room temperature (RT) due to
the special interest in their use in various technologies and applications. The superpara-
magnetic (SPM) and ferrimagnetic (FM) behaviors of Fe3O4 NPs depend on size, shape,
crystallinity, and surface properties and are even affected by synthetic methods [46–50].
Figure 3b illustrates the relationship of the Fe3O4 NP size (diameter) with its magnetic
behavior and coercivity. Two important size–magnetic property transitions of Fe3O4 NPs
are superparamagnetic size (rSP) and single-domain size (rSD), which usually exist in NPs
with diameters of ~25 nm and ~80 nm, respectively [45,51]. Superparamagnetic size (rSP)
is the point at which the magnetic property of NPs transitions from the superparamagnetic
to the ferromagnetic state, as NPs with a size larger than rSP have a coercivity larger than 0
(HC > 0). The features of the superparamagnetic behavior of NPs are coercivity and rem-
nant magnetization equal to zero (HC = 0 and MR = 0) at temperatures above their blocking
temperature (TB). In particular, NPs exhibit superparamagnetic behaviors at temperatures
above TB (T > TB) and ferromagnetic behavior at temperatures below TB (T < TB). When
the size of particles is adequately small (r < rSP), thermal energy overcomes anisotropy
energy at the blocking temperature (TB), and nanoparticles become superparamagnetic. In
our context, superparamagnetic NPs (at RT) should exhibit a blocking temperature much
lower than room temperature. The single-domain size (rSD) is the size at which NPs spon-
taneously separate into multiple domains, causing a decrease in coercivity when the size
of NPs increases. However, size is not a conclusive parameter that dictates the magnetic
properties. Depending on the size, geometry, crystallinity, surface properties, and synthetic
methods, the superparamagnetic–ferrimagnetic transition in Fe3O4 has been identified
at approximately 20 nm [52], or even at ~30 nm [53]. Similar to the superparamagnetic–
ferrimagnetic transition, the single-domain to multidomain transition occurs at different
values and depends on the overall size, degree of crystallinity, and surface properties of
NPs. Thus, the relationship between the size and magnetic properties of Fe3O4 NPs is not
easy to predict due to various contributing factors.
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In general, the magnetic properties of Fe3O4 NPs such as saturation magnetization
(MS) and coercivity (HC) are strongly affected by four main factors including finite size
effects, surface effects, magnetic anisotropy, and the degree of crystallinity [2,5,42,45,46].
These factors are correlated to each other and strongly influenced by the size and geometry
of the NPs. The finite size effects are typically related to special behaviors of a substance in
a finite nanoscale size, such as quantum confinement of electrons [2]. In nano-magnetism,
the single-domain limit and the superparamagnetic limit (presented in Figure 3) are the
most studied finite size effects, which typically dictate the magnetic behavior of particles for
ferrimagnetic and superparamagnetic responses, respectively [2]. While the superparamag-
netic limit has been discussed in the previous paragraph, the single-domain limit is driven
by balancing magnetostatic energy and domain wall energy, which induces the formation
of magnetic domains [2]. Thus, the finite size effect of the single-domain limit regulates
the change in ferrimagnetic properties, such as the change in coercivity in ferrimagnetic
NPs when the size of the NPs increases. As illustrated in Figure 3b, increasing the size of
NPs boosts HC until the specific size limit called the “single-domain limitation” is reached,
where the separation of multiple domains begins and induces the decrease in HC.

The surface effect has been used to rationalize the decrease in MS of smaller Fe3O4
NPs due to a surface-disordered spin layer [45]. For small NPs, the ratio of surface atoms
to bulk atoms increases, giving rise to more significant contributions of surface spins
to magnetization. The detrimental role of the surface effect on magnetization can be
rationalized by various contributions, such as canted spins, magnetically dead layers, and
spin glass-like behavior of surface spins [2]. As a consequence, the surfactants coated
on the NPs also alter the magnetic properties of NPs, which can either positively or
negatively affect the surface spin. Thus, the size of NPs can help to predict the change
in MS; however, it is not the conclusive factor. In addition, as different geometries of
NPs have different ratios of surface atoms, Fe3O4 NPs with comparable sizes but having
different shapes can exhibit different magnetic properties. Magnetic anisotropy describes
the directional dependence of the magnetic moment in materials. Magnetic anisotropy is a
crucial factor contributing to the effect of the size and geometry on magnetic properties. In
this context, magnetic anisotropy is related to magnetocrystalline anisotropy and shape
anisotropy, which correspond to the preferential magnetization direction of the crystals and
the departure from sphericity of particle shapes, respectively [2]. The magnetic anisotropy
of nanoparticles can be higher than the value obtained from the crystalline and shape
anisotropy due to enhanced surface anisotropy [2]. Furthermore, shape anisotropy is also
a vital factor to determine the strength of the magnetic properties of magnetic NPs [2,5].
Finally, highly crystalline structures can significantly enhance the magnetic properties of
NPs, even NPs with comparable sizes and shapes [46,47]. Enhanced crystallinity was also
proposed as the reason for increasing the magnetic properties of cubic versus spherical
Fe3O4 NPs [42]. These contributing factors, driven by the size and geometries of Fe3O4 NPs,
underpin the fundamental phenomena that rationalize or predict the magnetic properties
when the size and geometries of Fe3O4 NPs are varied.

Due to the strong effects of the geometry and size on the properties of NPs, we
will summarize the advances in the synthesis of Fe3O4 NPs with different geometries
and sizes. For a particular geometry, we will cover the synthesis routes for different
size ranges and compare the important properties (e.g., saturated magnetization MS and
coercivity HC) of these NPs. We focus on three geometries, spherical, cubic, and rod, and
highlight recent advances in the synthesis of other sophisticated geometries, such as 2D
hexagonal/triangular shapes, multiarmed structures, octahedrons, and hollow structures.
We focus on methods with high efficiency, good control of geometry uniformity, narrow
size distributions, and the ability to tune the size of particles.

2.1. Fe3O4 Spherical Nanoparticles (SNPs)

In this section, Fe3O4 spherical nanoparticles (SNPs) will be categorized into two
size ranges based on their structures, crystallinity, and magnetic behaviors. The first
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type is Fe3O4 SNPs with a size smaller than 25 nm and a single-crystalline structure that
probably exhibits superparamagnetic behavior at room temperature. This type of SNP is
widely applied in hyperthermia, as a contrast agent in magnetic resonance imaging, and in
drug delivery. Table 1 summarizes the available synthetic methods and the strategy for
controlling the size to obtain single-crystalline Fe3O4 SNPs with a size less than 25 nm,
as well as the magnetic properties of saturation magnetization at room temperature for
comparisons of these SNPs. The second type of SNP is usually polycrystalline NPs with
diameters generally larger than 25 nm to even hundreds of nanometers. The structure of
these Fe3O4 SNPs is often characterized by the stacking or agglomeration of small primary
nanocrystals to form larger SNPs as the secondary structure. In this size range, the magnetic
properties of SNPs at room temperature are either ferrimagnetic or superparamagnetic,
depending on the crystallite size, the overall size of NPs, and the interaction of nanosized
subunits. Together with summarizing the available synthetic methods of Fe3O4 SNPs with
sizes ranging from 25 nm to a few hundred nanometers, Table 2 also provides detailed
information on the particle size, crystallite size, and magnetic properties, including MS and
HC, at room temperature.

Table 1. Syntheses and magnetic properties of spherical Fe3O4 NPs with a size <25 nm in a superparamagnetic regime at
room temperature.

Diameter (nm) Precursor Method Size Control Factor MS (emu/g) a Ref.

4 (seeds), 8, 12, 16 Fe(acac)3
Thermal

decomposition Seed-mediated growth 82 (for 16 nm) [54]

6 (seeds), 8, 10, 16 Fe(acac)3
Thermal

decomposition
Temperature, seed-mediated

growth 83 (for 16 nm) [55]

5, 9, 12, 16, 22 Fe(oleate)3
Thermal

decomposition
Different organic solvents or
concentration of surfactant Unknown [56]

7, 8, 9, 10 Fe(acac)3
Thermal

decomposition

Ratio OAm/solvent. (OAm:
surfactant and reducing

agent)
76, 77, 79, 80 [57]

8, 11, 15, 18 Fe(acac)3
Thermal

decomposition Amount of surfactant ≈65–75 [58]

8, 11 Fe(acac)3 Solvothermal Different surfactants 73.1, 109.4 (emu/g Fe) [59]

4, 12
60 FeCl3·6H2O Solvothermal Reaction time 3, 59

84 (ferri) [60]

15.4, 16.7, 22.4, 31.1 FeCl3·4H2O Hydrothermal Concentration of reactants
and solvent composition 53.3, 65.1, 81.2, 97.4 [61]

4.2, 7.4, 8.1, 17, 45 Fe(acac)3
Thermal

decomposition Reducing agent, surfactant 75, 70, 65, 82, 92 [62]

6.6, 11.6, 17.8 FeCl2·4H2O
FeCl3·6H2O Solvothermal Solvent composition 71, 77, 83 [63]

11 FeCl2·4H2O
FeCl3·6H2O Sonochemistry None 80 [64]

a Saturation magnetization (MS) value at 300 K. Bold indicates that the size of NPs (diameter) exceeds 25 nm.

Thermal decomposition of iron complexes at high temperature in high-boiling point
organic solvents has proven to be an effective method to generate Fe3O4 nanospheres with
sizes ranging from 4 to 30 nm [54–58]. Sun et al. reported the thermal decomposition of
Fe(acac)3 in phenyl ether (boiling point: 260 ◦C) at 265 ◦C to synthesize monodisperse 4 nm
Fe3O4 SNPs [54]. 1,2-Hexadecanediol was used as the reducing agent, and a mixture of oleic
acid (OA) and oleylamine (OAm) was utilized as the surfactant. The as-synthesized 4 nm
NPs were then used as seeds for seed-mediated growth to obtain 8, 16, and 20 nm SNPs
with the assistance of stearyl alcohol. Larger seeds with an average diameter of 6 nm were
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prepared by refluxing at a higher temperature of 300 ◦C in the higher-boiling point benzyl
ether solvent (boiling point: 296 ◦C) [55]. In this method, 1,2-hydrocarbon diols served as
excellent reducing agents for the synthesis of high-quality Fe3O4 SNPs with good yields for
use as seed NPs. Interestingly, the seed-mediated growth processes normally require long-
chain mono-alcohols to grow larger particles rather than diol derivatives. Later, Xu et al. [57]
reported a more convenient one-pot method to synthesize Fe3O4 nanospheres with sizes of
7, 8, 9, and 10 nm by simply controlling the ratio of OAm and benzyl ether, as shown in
Figure 4a. Here, oleylamine served as a multifunctional reagent: a strong reductive agent
and an effective capping agent [57,65]. The obtained NPs exhibited a homogeneous size and
uniform spherical morphology, as verified using transmission electron microscopy (TEM).
Selected TEM images of Fe3O4 SNPs with sizes of 7 and 10 nm are presented in Figure 4b,c,
respectively. The heating procedure is very important in the thermal decomposition of
Fe(acac)3, which usually requires maintenance at 200 ◦C for nucleation prior to refluxing
or a quick ramping rate of 20 ◦C/min. Therefore, precisely controlling the temperature of
the reaction and a powerful heating process represent a technical challenge for large-scale
production. Later, Lee and coworkers successfully lowered the reflux temperature to 200 ◦C
using alkaline metal reagents to assist with the reduction of iron precursors [58]. In the
presence of Mg(acetate)2, monodisperse Fe3O4 SNPs with sizes of 8, 11, 15, and 18 nm were
prepared. Park et al. reported an ultralarge-scale synthesis with 40 g of products obtained
per single reaction using the inexpensive and environmentally friendly starting material
iron(III) chloride [56]. Nanospheres with sizes of 5, 9, 12, 16, and 22 nm were prepared
with a uniform size (size variation < 4.1%) and homogeneous morphology. Iron(III) oleate
complexes were first prepared from iron(III) chlorides and sodium oleate before refluxing
with oleic acid at 320 ◦C in different high-boiling point organic solvents to obtain SNPs of
different sizes. In addition to the advantages of highly uniform size and morphology, NPs
prepared using thermal decomposition usually have hydrophobic surfaces that require
surface modifications for applications requiring water-soluble nanosubstances, such as
biomedical applications or catalysis in aqueous media. Li and coworkers approached this
problem by applying surfactant-free thermal decomposition of the inexpensive precursor
FeCl3·6H2O in a strongly polar 2-pyrrolidone solvent [60]. This recipe allowed obtaining
SNPs in a wider range of sizes from 4 to 60 nm by simply controlling the reaction time.
Thus, thermal decomposition is a useful synthesis method producing high-quality Fe3O4
SNPs with good uniformity in size and morphology.
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In addition to thermal decomposition, solvothermal methods are also used to syn-
thesize spherical superparamagnetic NPs in this size range below 25 nm at lower temper-
atures than thermal decomposition methods. Caruntu et al. prepared Fe3O4 SNPs with
sizes ranging from 6.6 to 17.8 nm through the solvothermal mixing of FeCl2 and FeCl3
precursors in solvent mixtures using different ratios of diethylene glycol and N-methyl di-
ethanolamine [63]. Fe(acac)3 has also been used as a precursor in the solvothermal synthesis
of 8 and 11 nm SNPs by employing different surfactants [59]. In addition, direct preparation
of SNPs with hydrophilic surfaces has also been developed [18,66]. However, the size dis-
tribution and uniformity of the spherical geometry are not as good as SNPs prepared using
thermal decomposition at high temperatures. For example, Ge and coworkers synthesized
15 to 31 nm NPs by oxidizing FeCl2·4H2O in a basic aqueous solution [61]. These NPs
exhibit the gradual transition from ferromagnetic to superparamagnetic when decreasing
in size. Kim and colleagues developed a facile route for the large-scale sonochemical
synthesis of 11 nm Fe3O4 SNPs with MS = 80 emu/g using inexpensive and nontoxic
reactants, such as FeCl2, FeCl3, and H2O [64]. Thus, among the various synthesis methods,
thermal decomposition is the most effective for the synthesis of Fe3O4 nanospheres with a
size less than 25 nm. The size and uniformity of NPs can be effectively controlled in this
method by modifying the amounts of surfactants, heating protocol, reducing agents, or
solvent compositions. The main drawback of this method is the technical requirements for
maintaining high temperatures and fast heating rates.

Spherical particles in the size range from 25 to even a few hundred nanometers have
been synthesized successfully using various recipes and solvothermal methods [42,43,48].
In this size range, spherical Fe3O4 NPs exhibit diverse magnetic behaviors, either su-
perparamagnetic or ferrimagnetic (Table 2). In contrast to single-crystalline SNPs with
sizes below 25 nm, magnetite particles in the larger size range (diameter > 25 nm) are
usually polycrystalline NPs. These NPs are composed of numerous primary nanocrystals
aggregated to form secondary structure NPs. Consequently, the magnetic properties of
these nanospheres depend on the size of the nanosized subunits, the overall size of the
nanospheres, interactions of the primary crystals, surface properties, and morphology.
These NPs are either ferrimagnetic or superparamagnetic, depending on both their overall
size and the size of the subunits. These types of nanoparticles are also called “colloidal
nanocrystal clusters” (CNCs) [53] or colloidal superparticles (SPs) [67,68]. For example,
Zhuang and coworkers prepared iron oxide NPs with a size of 5.8 nm through the thermal
decomposition of iron(III) oleate [56] and then used nanoparticle micelle formation to form
larger supercrystalline colloidal SPs with sizes of 120, 190, and 560 nm via solvophobic
interactions [67,68]. These colloidal SPs have superparamagnetic properties at room temper-
ature along with excellent stability in polar solvents. Deng et al. reported single-crystalline,
monodisperse ferrite NPs with tunable sizes ranging from 200 to 800 nm using a solvother-
mal reduction method [48]. A TEM image of the obtained mean 200 nm spherical Fe3O4
NPs is shown in Figure 4d. Later, this method was widely applied to synthesize SNPs for
various applications, including protein detection [43] and drug delivery [69]. In the pres-
ence of a polyethylene glycol (PEG) surfactant, FeCl3·6H2O was reduced in ethylene glycol
at 200 ◦C assisted by sodium acetate, an electrostatic stabilizer and a reductive-mediated
agent. The size of NPs is simply controlled by the reaction time in the range of 8 to 72 h. Lee
and colleagues modified this recipe by adding different surfactants, polyvinylpyrrolidone,
refluxing at 180 ◦C, and manipulating the reaction time from 4 to 24 h to generate NPs with
diameters ranging from 100 to 275 nm [42]. Separately, Yin and coworkers successfully syn-
thesized highly water-dispersible Fe3O4 SNPs with sizes from 30 to 180 nm by controlling
the hydrolysis of FeCl3 during high-temperature reduction in diethylene glycol [53]. In
this recipe, poly(acrylic acid) (PAA) was used as the surfactant and dictated the release of
water for hydrolysis upon the addition of NaOH. Thus, the size of NPs can be tuned by
adding different amounts of NaOH stock solution in DEG. The packing of small primary
crystals with a size of approximately 10 nm to form colloidal nanocrystal clusters (mean
size 30–180 nm) has many advantages, such as maintaining superparamagnetic behavior



Appl. Sci. 2021, 11, 11301 10 of 34

and water-dispersible properties, as well as enhancing the overall magnetization of the
nanoparticles. In addition to synthesizing different sizes of secondary structure SNPs
with similar crystalline subunits, the preparation of NPs of similar sizes with a tunable
degree of crystallinity was reported by Xuan and coworkers. They developed a method
to prepare secondary structures of CNCs with a diameter of 280 nm that have tunable
crystallite sizes ranging from 5.9 to 21.5 nm [46]. By employing different ratios of sodium
acetate and sodium acrylate, grain sizes were controlled without changing the overall
size of NPs. Consequently, similar sizes of NPs with different magnetization values were
obtained. Moreover, a novel strategy to tune the size of secondary structural Fe3O4 SNPs
from 6 to 170 nm was introduced that used different solvent mixture compositions of EG
and DEG. Due to its bulky molecules, DEG slowed the aggregation of primary crystals
and created more seeds for growing NPs, causing smaller NPs to form [43,46,47]. Utilizing
this binary solvent system, the size of spherical NPs was even manipulated in a wider
range from 20 to 300 nm [47]. These NPs have either superparamagnetic or ferrimagnetic
properties that are dictated by varying the water concentration in the synthesis reaction.
Liu et al. studied the effect of the water volume fraction on the crystallite sizes and sizes
of NPs in solvothermal synthesis using ethylene glycol as the solvent [70]. They found
that the overall size of particles exhibited an extremely wide range (82 to 1118 nm) when
the volume percentage of added water increased (from 5.5% to 20.5%). The crystallite size
of NPs changes with an increasing water volume ratio and follows an inverse U-shaped
curve, with the peak located at a 14.5% water volume ratio. In another study, Chen et al.
used a solvent mixture composed of a 1/3 ratio of EG/DEG to obtain 100 nm Fe3O4 NPs
and only an EG solvent with a higher concentration of iron precursors to prepare magnetite
NPs with sizes of 440 and 720 nm [43]. These NPs were prepared in a pressure vessel at
188 ◦C under continuous vigorous agitation. Based on these results, which are summarized
in Table 2, the solvothermal reduction of the FeCl3 precursor and the controlled hydrolysis
of iron cations are useful methods to prepare Fe3O4 in a wide range of sizes, from a few
tenths to a few hundred nm. These Fe3O4 NPs have tunable degrees of crystallinity and
exhibit different magnetic properties, ranging from superparamagnetic to ferromagnetic.
With featured properties and size characteristics, these spherical Fe3O4 nanoparticles can
be used in multiple applications, such as sensing, biomedical applications, environmental
remedies, and catalysis.

Table 2. Syntheses and magnetic properties of SNPs with sizes larger than 25 nm.

Diameter
(nm)

Precursor and
Reagents Solvent Size Control

Factor
Grain Size

(nm) MS (emu/g) HC (Oe) [Ref.]

200, 400, 800 FeCl3·6H2O,
NaAc, PEG

Ethylene
glycol (EG) Rxn time UN 81.9

UN, UN UN [48]

31, 53, 71, 93,
141, 174

FeCl3, NaOH,
PAA

Diethylene
glycol (DEG)

NaOH stock
solution ≈10 UN, 30.9, UN,

56.7, UN, 63.5 SPM [53]

120, 190, 560
(SPs)

Fe3O4 NPs functionalized with
OA and DTAB in chloroform.

PVP in EG.

Concentration of
DTAB and

nanoparticles
5.8 (NPs) UN SPM [67]

[68]

280 FeCl3.6H2O
Na(acrylate)

NaAc

EG - 5.9, 6.9, 8.3,
13.5

36.2, 38.7,
46.5, 67.2 SPM

[46]
6, 60, 120, 170 EG/DEG Solvent

composition 10 UN SPM

20, 90, 165,
300.

FeCl3·6H2O,
NaAc, PVP EG/DEG Solvent

composition 10–20 62.1, 62.1,
62.8, 63.9 8, 20, 28, 16 [47]

82, 139, 188,
544, 728, 1116

FeCl3·6H2O,
NaAc, PAA, H2O EG H2O

15.4, 20.7,
23.9, 18.6,
17.7, 17.6

56, 71, 73, 79,
80, 80.27

115, 141, 149,
139, 136, 127 [70]
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Table 2. Cont.

Diameter
(nm)

Precursor and
Reagents Solvent Size Control

Factor
Grain Size

(nm) MS (emu/g) HC (Oe) [Ref.]

100, 135, 150,
175, 275

FeCl3·6H2O,
NaAc, PVP EG Rxn time 17, 17, 15, 12,

11
69, 72, 65, 32,

56
106, 42, 66,

21, 28 [42]

120, 440, 700 FeCl3·6H2O,
NaAc, PEG EG, DEG

Solvent
composition,

FeCl3
18, 17, 17 78, 84, 87 62, 73, 72 [43]

UN denotes unknown, as the information was not provided in the literature. SPM denotes superparamagnetic, HC = MR = 0 (at RT). Values
in italics indicate that the data were estimated from figures provided in the referenced articles.

2.2. Fe3O4 Cubic Nanoparticles (CNPs)

Fe3O4 cubic nanoparticles (CNPs) exhibit either superparamagnetic or ferromagnetic
behaviors at room temperature, depending on the size of the NPs and the synthetic methods.
However, the preparation of cubic magnetite nanocrystals seems to be more challenging
than the preparation of spherical NPs. With the nature of a cubic crystal structure, Fe3O4
tends to undergo isotropic growth that easily results in spherical particles. Several studies
demonstrated that CNPs possess better crystallinity and stronger magnetic properties
than their spherical counterparts with equivalent sizes [41,42,71]. Due to the challenge of
maintaining dominant growth along <111> surfaces, only a limited number of synthetic
methods are available for the preparation of CNPs with sizes ranging from approximately
10 to 180 nm [49,50,72]. The available synthetic methods, size control factors, and magnetic
properties of the corresponding Fe3O4 CNPs are summarized in Table 3.

Table 3. Syntheses of Fe3O4 nanocubes and their magnetic properties.

Edge (nm) Precursor and Reagents Solvent(s) Size Control
Factor MS (emu/g) HC (Oe) Ref.

9.3, 13.4, 15.5,
22.1

Fe(oleate)3
Sodium oleate

Octadecene,
diphenyl ether,
n-tetracosane

Surfactant,
Temperature UN SPM [73]

6.5
15
30

Fe(acac)3
1,2-hexadecandiol

Oleic acid, Oleylamine
Benzyl ether Heat rate,

Reaction time

39.5
80.5
83.0

SPM
SPM

100 Oe
[49]

22
79

160

Fe(acac)3
Oleic acid Benzyl ether

Concentration,
Reaction time,

Ligand

152
136
144

emu/g(Fe)

17
88

115
[50]

13
45
67

100
124
180

Fe(acac)3
Decanoic acid Benzyl ether Ramping rate

54.7
89.9
89.0
92.8
86.0
81.9

SPM
≈50
UN
UN
UN
≈50

[72]

12
19
25
38

Fe(acac)3
Decanoic acid Benzyl ether

Degas
temperature,
Ramping rate

UN
80

UN
UN

UN
UN
UN
UN

[52]

14, 19, 24, 35 Fe(acac)3
Decanoic acid

Benzyl ether
Squalene

Ramping rate,
Solvent

composition
64, 73, 75, 88 26, 28, 7, 23 [44]

22, 36, 57

Fe(acac)3
Mg(acetate)2

Sodium oleate
Oleic acid

Benzyl ether Sodium oleate UN UN [58]
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Table 3. Cont.

Edge (nm) Precursor and Reagents Solvent(s) Size Control
Factor MS (emu/g) HC (Oe) Ref.

78, 87, 101, 130 Fe(acac)3
Oleic acid Benzyl ether Concentration,

Reaction time 90, 95, 95, 80 139, 165, 177, 80 [42]

10–80
Fe(acac)3
Oleic acid

Sodium oleate

Benzyl ether
1-octadene

1-tetradecene

Concentration,
Degassing

temperature,
Ramping rate

84
(for 15.3 nm)

SPM
(for 15.3 nm) [74]

80 FeSO4·7H2O
NaOH H2O None 85.8 emu/g UN [75]

26

Fe(acac)3
Trimethylamine N-oxide

Mercaptoethanol
β-amyrin

Benzyl ether None 51.8 262 [71]

UN denotes unknown, as the information was not provided in the literature. SPM denotes superparamagnetic, HC = MR = 0. MS and HC at
300 K. Values in italics indicate that these data were estimated from figures provided in the references.

Kovalenko and coworkers performed the thermal decomposition of iron(III) oleate
in the presence of a sodium oleate surfactant to prepare superparamagnetic cubic Fe3O4
with edge dimensions of 9.3, 13.4, 15.5, and 22.1 nm [73]. Similarly, Yang et al. utilized
Fe(acac)3 as a precursor together with 1,2-hexadecandiol, oleic acid, and oleylamine at a
high temperature (290 ◦C) [49]. By increasing the heating rate from 5 to 35 ◦C/min and
shortening the reaction time from 3 h to 20 min, monodisperse nanocubes with controllable
sizes ranging from 6.5 to 30 nm were prepared. Hyeon and colleagues reported a simple
route using only two reagents, Fe(acac)3 (precursors) and oleic acid (surfactant) [50]. This
mixture with a precise 1:2 molar ratio of Fe(acac)3 and oleic acid was degassed and then
refluxed at 290 ◦C in benzyl ether with a fast ramping rate of 20 ◦C/min. By controlling
the concentration of reagents and reaction time, Fe3O4 nanocubes with edge lengths of
79 and 160 nm were obtained. Surprisingly, 1.6 g of magnetite nanocubes with an edge
length of 49 nm can be synthesized by scaling up the recipe for the 79 nm nanocubes
10 times. Biphenylcarboxylic acid can be introduced in combination with oleic acid to
direct the growth of 22 nm Fe3O4 nanocubes as a method to reduce the nanocube size. Lee
and colleagues applied this synthetic approach to prepare Fe3O4 nanocubes with sizes
ranging from 78 to 130 nm and explored their biosensing potential [42]. The authors also
observed significantly higher magnetic properties of the Fe3O4 nanocubes compared to the
nanospheres with a similar volume or comparable diameter/body diagonal dimensions.
Using a different fatty acid in the thermal decomposition of Fe(acac)3, Guardia et al.
remarkably controlled the sizes of magnetite cubic particles in a broad range from 13 to
180 nm by adjusting the heating rate [72]. Specifically, the mixture of decanoic acid and
iron(III) acetylacetonate with a 4-to-1 molar ratio was first heated to 60 ◦C for degassing,
subsequently ramped to 200 ◦C, and finally refluxed at 290 ◦C with a slow ramping rate
from 0.8 to 5.2 ◦C/min. Pellegrino and colleagues applied this recipe with modifications
to synthesize iron oxide nanocubes with sizes ranging from 12 to 38 nm and investigated
their performance in cancer hyperthermia treatments [52]. In addition, solvent mixtures of
squalene and benzyl ether were used to overcome the unstable temperature problem of
a pure benzyl ether solvent during the reaction [44]. This binary solvent system allowed
more precise control of the reaction temperature and improved reproducibility.

Lee and collaborators reported the synthesis of magnetite nanocubes with sizes of 22,
36, and 57 nm at a lower refluxing temperature (200 ◦C) using an alkaline metal acetate
to assist with the reduction process [58]. The amount of sodium oleate surfactant was
found to play an important role in controlling the size of nanocubes. Recently, significant
progress in understanding the mechanism and size-controllable synthesis was reported by
Muro-Cruces, Roca, and coworkers. They used a binary surfactant system containing oleic
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acid and sodium oleate in mixtures of three solvents (1-octadecene, dibenzyl ether, and
1-tetradecene) to obtain nanocubes with uniform sizes ranging from 9 to 80 nm [74]. Benzyl
ether was again identified as a good solvent for the dispersion of Fe(acac)3 precursors;
however, it is not stable at high temperatures, producing volatile products such as benzyl
aldehyde or benzyl benzoate [44,76]. Thus, the combination of 1-octadecene, dibenzyl ether,
and 1-tetradecene was utilized to compromise between the good dispersion of precursors
and maintain a stable temperature during synthesis. Figure 5a presents the synthetic
strategy using a combination of three solvents and two surfactants to synthesize Fe3O4
nanocubes in a 9–80 nm size range. The growth mechanism is proposed in Figure 5b, start-
ing from the nucleus to the truncated octahedron, then the tetradecahedron, and finally the
nanocubes. In this figure, the chemical potentials of crystal facets are presented from low
to high, as indicated by a green-to-red color scale. In addition to thermal decomposition,
magnetite nanocubes have also been synthesized using sonochemistry [75,77], precipi-
tation [78], and solvothermal green synthesis [71]. However, thermal decomposition at
high temperatures assisted by fatty acid ligands is the most efficient method that provides
uniform cubic geometries, a narrow size distribution, and tunable sizes in a wide range
from approximately 10 to 180 nm.
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2.3. Other Geometries

The isotropic spherical geometry and anisotropic cubic geometry are two morpholo-
gies of Fe3O4 nanoparticles that have been extensively studied in synthesis and applications.
Moreover, various anisotropic or special geometries of Fe3O4 nanoparticles have been syn-
thesized, such as the 1D structures of nanorods and nanotubes and the 2D structures of
nanoprisms, hexagonal nanoplates, multiarmed nanostars, tetrapods, and hollow nanopar-
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ticles [17]. Detailed descriptions of the sizes, morphologies, and related magnetic properties
of these special geometries of Fe3O4 NPs are presented in Table 4.

Table 4. Fe3O4 nanoparticles with special geometries and their magnetic properties.

Morphologies Size/Dimension (nm) Magnetic Properties (at 300 K) Ref.

Nanorods 63 × 6.5
140 × 12 MS = 20.01, HC = 46.53 [79]

Nanorods
41 × 7

65 × 5.7
56 × 10

MS = 86 emu/g
MS = 84 emu/g
MS = 87 emu/g

[40]

Nanorods 41 × 7 MS = 86 emu/g, HC = 50 (Oe)

Nanorods

35 × 5.5
55 × 8
75 × 9

120 × 8
180 × 24

MS = 44 emu/g
MS = 53 emu/g
MS = 59 emu/g

MS = 55 emu/g, HC = 1100 Oe (10K)
HC = 850 Oe (10K)

[80]

Nanorods 310 × 135 Superparamagnetic [81]

Nanoplates
Width (hexagonal): 120

Side length (triangular): 90
Thickness: 7

MS = 84.7 emu/g, HC = 117.72 Oe, MR = 13.36 emu/g [82]

Triangular nanoprisms Edge: 113
Thickness: 25 MS = 81.44 emu/g, HC = 126.29 Oe, MR = 11.29 emu/g [83]

Triangular nanoprisms Edge: 22
Thickness: 10 UN [84]

Hexagonal nanoplates Diameter: 200
Thickness: 20–30 MS = 51.4 emu/g, HC = 263 Oe, MR = 18.9 emu/g [85]

Multiarmed
(bipod, tripod, and tetrapod)

Diameter of arms: 100–200
Length of arms: up to 2 µm MS = 106.6 emu/g, HC = 148.5 Oe, MR = 30.8 emu/g [86]

Hollow spheres Diameter: 16
Shell thickness: 3 UN [87]

Hollow spheres Diameter: 120 nm MS = 85.4 emu/g [88]

Hollow spheres Diameter: 295 nm MS = 76.7 emu/g [89]

For simple one-dimensional morphologies and highly anisotropic shapes, single-
crystalline Fe3O4 nanorods were synthesized through the solvothermal synthesis of an
iron pentacarbonyl precursor in octanol using hexadecylamine and oleic acid coordinating
agents [79]. By adjusting the amount of hexadecylamine and reaction time, the sizes of
nanorods or aspect ratios (length-to-diameter ratio) can be controlled. Two different sizes,
length × diameter (L × D) of 65 × 6.5 nm and 140 × 12 nm, were observed with TEM, and
HR-TEM images of the obtained Fe3O4 nanorods are shown in Figure 6a,b [79]. Separately,
Das and coworkers synthesized Fe3O4 nanorods with different aspect ratios ranging from
5.6 to 11. They also reported the synthesis of Fe3O4 nanorods with comparable aspect ratios
but different lengths and diameters [40]. A mechanistic study of the reaction revealed
that Fe3O4 nanorods are formed by heteronucleation on intermediate FeO nanocubes [79].
In this reaction, Fe(CO)5 is first decomposed under solvothermal conditions to generate
metallic iron. Then, metallic iron is oxidized by dissolved oxygen or other oxidizing species
in the solution to form FeO nanocubes. At the same time, Fe(CO)5 reacts with oleic acid to
form iron oleate simultaneously to the condensation of hexadecylamine and oleic acid to
release water molecules for the hydrolysis of iron oleate. Combined with the dissolution of
FeO, the decomposition of Fe(CO)5 and the hydrolysis of iron oleate provide the source
for growing Fe3O4 nanorods. Applying this method, Chandra et al. fabricated epitaxial
magnetite nanorods on a SrTiO3 substrate and observed enhanced room temperature
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magnetic anisotropy [90]. Nanorods of Fe3O4 have also been synthesized using a two-step
process starting with the preparation of β-FeOOH nanorods before refluxing in oleylamine
to form the Fe3O4 phase [80]. This method allows the preparation of nanorods with a wide
range of controllable lengths from 35 to 180 nm, and the diameter can be tuned from 5.5 to
24 nm. Larger dextran-coated nanorods with average dimensions of L × D 310 × 135 nm
were synthesized using a precipitation method [81]. Surprisingly, these large nanorods are
retained in the superparamagnetic regime and have potential applications as spin–spin
relaxation contrast agents and in monitoring peroxidase activity.
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Two-dimensional nanoplates of Fe3O4 with hexagonal or triangular geometries have
also been synthesized using various different methods. Single-crystalline Fe3O4 nanoplates,
consisting of triangular and hexagonal shapes, were synthesized with a facile template-free
solvothermal method [82]. These nanoplates have an average thickness of ~7 nm, a mean
width of ~120 nm for hexagonal shapes, and a ~90 nm side length for triangular shapes.
Interestingly, due to the shape anisotropy of nanoplates, the nanoplates exhibit an extremely
high coercivity of 117.72 Oe, which is higher than the coercive fields observed for spheres,
polyhedral, solid, or hollow spheres (usually less than 110 Oe). Li et al. also applied a
simple hydrothermal method using 1,3-propanediamine to prepare single-crystalline Fe3O4
triangular nanoprisms with an average edge length of 113 nm and a mean thickness of
~25 nm [83]. Triangular nanoprisms have also been synthesized by the decomposition of
Fe(acac)3 in toluene using oleylamine as the surfactant and reducing agent [84]. In addition
to wet syntheses, the supercritical fluid technique was also applied to synthesize Fe3O4
hexagonal nanoplatelets. This method utilized ferrocene as a precursor and supercritical
carbon dioxide (sc-CO2) as the solvent and oxygen sources [85]. As shown in Figure 6e,
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the obtained hexagonal plates are uniform with a mean diameter of 200 nm and thickness
ranging from 20 to 30 nm.

In addition to anisotropic shapes such as 1D nanorods and 2D nanoplates, a special
geometry of multiarmed nanocrystals containing Y-shaped bipods, tripods, and tetrapods
was successfully synthesized with a simple route using a mild hydrothermal protocol. This
special geometry of multiarmed nanostructures exhibited an extremely high saturation
magnetization of 106.6 emu/g, which is even higher than the maximum MS value of
92 emu/g for bulk magnetite [86]. TEM images of the tripod and tetrapod Fe3O4 nanocrys-
tals are shown in Figure 6f,g, respectively. Moreover, a special version of the isotropic
morphology of SNPs with hollow nanostructures was also synthesized [87,88]. Because
they possess porous shells, these Fe3O4 hollow nanostructures are potentially useful for
drug delivery applications. Separately, 19 nm porous hollow Fe3O4 nanoparticles were
prepared through the controlled oxidation of Fe NPs, followed by an acid etching step [87].
The morphology and structure of these porous hollow NPs are presented in Figure 6c,d.
Larger hollow Fe3O4 NPs with a mean diameter of 120 or 295 nm were also prepared
using a direct solvothermal method or a combination of a solvothermal route and etching,
respectively [88,89].

An atlas of synthetic strategies for synthesizing various geometries of magnetite
nanoparticles, such as tetrahedrons, octahedrons, tetradecahedrons, cubes, and stars, was
developed by Swihart and coworkers [76]. The authors proposed the growing mechanism
of Fe3O4 nanocubes during the synthesis process and provided controllable growth proce-
dures to obtain different geometries, such as tetrahedrons, octahedrons, and star shapes
(cubic with sharply extruded corners), as shown in Figure 7.
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Significant efforts have been made in the last 20 years to synthesize Fe3O4 nanopar-
ticles with highly pure compositions, controllable sizes in a wide range, good uniform
geometry, and high degrees of crystallinity. Furthermore, the in-depth mechanism of
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some synthetic protocols has been explained, which provides a better understanding of
nanochemistry during synthesis processes and allows the tailoring of nanoparticle prop-
erties. In terms of synthesis, spherical Fe3O4 nanoparticles are relatively easily prepared
and available in a wide range of sizes for use in various applications. Compared to spher-
ical NPs, cubic Fe3O4 NPs show enhanced magnetic properties; however, the uniform
growth of cubic crystals is more difficult to control. Although Fe3O4 nanorods possess large
surface contact areas, they exhibit moderate magnetic properties. Some special geome-
tries have excellent magnetic properties, such as 2D nanoplates with high coercivity and
multiarmed nanocrystals with high saturation magnetization. Thus, this review provides
a brief summary of the preparation of Fe3O4 NPs with specific sizes, geometries, and
magnetic properties, which may be helpful for the preselection of synthetic routes for any
target application.

3. Techniques for Characterizing Fe3O4 NPs

A combination of different methods is usually required to identify the composition
and purity and evaluate the properties of Fe3O4 NPs. The most important aspect is to distin-
guish Fe3O4 from the maghemite phase and identify the compositional uniformity. Because
the oxidation of Fe2+ to Fe3+ is a thermodynamically favored process, the coexistence of
magnetite and maghemite phases is usually observed in Fe3O4 nanoparticles [56,91]. The
presence of the maghemite phase in the magnetite nanoparticles may lead to a decrease
in saturation magnetization. X-ray diffraction (XRD) is generally unable to distinguish
between magnetite and maghemite phases due to similar patterns originating from the
same cubic spinel structures [91]. However, two features that can be deduced from XRD
are matching lattice parameters, and d-spacings have been used to further confirm the
existence of the dominant magnetite phase [50,54,57]. For example, a slight difference in
the standard lattice parameters of magnetite (8.396 Å) and maghemite (8.346 Å) has been
identified [57]. X-ray photoelectron spectroscopy (XPS) is an effective method to prove the
existence of the magnetite phase because of the coexistence of Fe2+ and Fe3+ cations [92]. In-
frared spectroscopy [66,93] and Raman spectroscopy [94,95] are also widely used to assign
and identify magnetite materials. For the quantitative analysis of the coexistence of differ-
ent iron oxide phases in NPs, X-ray absorption spectroscopy (XAS) and X-ray magnetic
circular dichroism spectroscopy (XMCD) have been used to quantitatively estimate the
compositions of the mixture of maghemite and magnetite (γ-Fe2O3)1−x(Fe3O4)x, with the
value of x ranging from 0.20 to 1.00 [56]. In addition to spectroscopic techniques, magnetic
properties are also measured to characterize magnetite NPs. For example, magnetization
versus temperature measurements reveal a kink at low temperature related to the Verwey
transition of Fe3O4, while this feature does not occur in γ-Fe2O3. The Verwey transition in
Fe3O4, which is usually observed for bulk magnetite at approximately 115–124 K, is also a
good parameter to evaluate the level of crystallinity and match the stoichiometry of Fe3O4
NPs [41,96]. Hence, a combination of different characterization techniques is important
to identify important factors that affect the magnetic properties of Fe3O4 NPs, such as the
existence of the material phases, the uniformity of compositions, and the crystalline level.

4. Applications of Fe3O4 Nanoparticles
4.1. Biomedical Applications (Therapeutic and Diagnostic Technologies)

Combinations of excellent magnetic properties, inexpensive materials, great biocom-
patibility, and iron oxide have been widely investigated in various medical applications [35].
FDA approval for employing iron oxide nanoparticles as medical contrast agents for
magnetic resonance imaging (MRI) indicates significant progress in applying magnetic
iron oxide nanoparticles. Conventionally, magnetic contrast agents, hyperthermia, and
drug delivery are the three most frequently explored biomedical applications of Fe3O4
nanoparticles. Furthermore, surface functionalization or preparation of bioconjugated
Fe3O4-based substances has provided additional applications. We will introduce appli-
cations of Fe3O4 nanoparticles and their functionalized or core–shell structures in MRI,
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hyperthermia, and drug delivery. Moreover, we will highlight recent efforts in the prepara-
tion of multifunctional nanoparticles that integrate multiple applications in a single Fe3O4
nanoparticle-based system.

4.1.1. Contrast Agents for Magnetic Resonance Imaging (MRI)

Magnetic contrast agents for MRI are some of the most promising applications of iron
oxide nanoparticles. Several commercial iron oxide nanoparticles are used as MRI contrast
agents, such as Feridex (dextran-coated Fe3O4 and γ-Fe2O3), Resovist (carboxydextran-
coated Fe3O4), and Combidex (dextran-coated Fe3O4) [97–99]. Contrast agents have been
used to enhance the contrast and improve the resolution of diagnostic MRI by reducing
either the longitudinal (T1) or transverse (T2) relaxation time of water protons. Conse-
quently, two types of contrast agents, T1 and T2, enhance the positive (bright signal) or
negative (dark signal) contrast, respectively. As presented in Equations (1) and (2), the
inverse of the relaxation time (1/T1 and 1/T2) is called the relaxation rate and is plotted as
a function of the iron concentration to obtain linear lines. From those data, we are able to
determine the slopes that are relaxivities r1 and r2, respectively. The higher the value for
either r1 or r2, the better the contrast performance of T1 or T2 contrast agents, respectively.
In addition, the ratio of relaxivities, r2/r1, can be used to evaluate the potential of a contrast
agent, with lower values preferred for T1 agents and higher values for T2 agents. Although
Fe3O4 nanoparticles have been extensively investigated as T2 contrast agents [100–104],
increasing efforts to use Fe3O4 nanoparticles as T1 contrast agents have been reported
recently [98,105]. In-depth mechanisms of T1-weighted and T2-weighted contrast agents
in MRI and criteria for NPs as efficient MRI contrast agents were discussed in previous
reviews [97,98]. These investigations were conducted with both superparamagnetic and
ferrimagnetic Fe3O4 NPs, usually including functionalized NPs or core–shell architectures
for better colloidal stability and biocompatibility.

1
T1

=
1

T1([Fe] = 0)
+ r1[Fe] (1)

1
T2

=
1

T2([Fe] = 0)
+ r2[Fe] (2)

Different geometries, sizes, and nanostructures of Fe3O4-based nanoparticles have
been investigated as MRI contrast agents. Lee et al. prepared ferrimagnetic uniform-sized
Fe3O4 nanocubes with an edge length of 22 nm functionalized with PEG-phospholipids to
provide excellent colloidal stability in aqueous media and great biocompatibility [106]. The
colloid-containing functionalized 22 nm-sized Fe3O4 nanocubes exhibit a very high r2 relax-
ivity of 761 mM−1 s−1, which achieved the theoretically predicted maximum r2 relaxivity.
Figure 8a–d present the morphology of nanocubes, an image of a stable colloid, and in vivo
images of tumors visualized with and without nanocube contrast agents. T2-weighted
images produced with different sizes of nanocubes in various concentrations and their color-
coded images are shown in Figure 8e,f. Separately, hyperbranched polyglycerol-grafted
Fe3O4 NPs (size from 6 to 9 nm) were successfully synthesized with excellent colloidal sta-
bility in water, phosphate-buffered saline (PBS), and cell culture medium [107]. These NPs
exhibit a contrast enhancement effect on T2-weighted sequences. Moreover, highly crys-
talline 8 nm Fe3O4 NPs were functionalized with an epoxy silane, (3-glycidyloxypropyl)
trimethoxysilane, followed by the use of three-membered ring-opening chemistry to fur-
ther graft polymers (e.g., polyetheramine and arginine) to the particle surface [108]. These
functionalized NPs were highly dispersible in water and exhibited a high spin–lattice
relaxivity r1 of 17 s−1 mM−1 and low r2/r1 ratios ranging from 3.3 to 3.8, which are good
characteristics for T1 positive contrast agents. Bai and coworkers synthesized ultrasmall
superparamagnetic Fe3O4 NPs modified with bull serum albumin and investigated these
NPs as T1–T2 dual-modal MRI contrast agents in rabbit hepatic tumors [109]. In vivo ex-
periments showed a rapid T2-weighted effect after 5 min, and T1 contrast enhancement ap-
peared 90 min after intravenous administration. An Fe3O4-based dual-mode contrast agent
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for MRI and computed topography (CT) imaging was developed by Dheyab et al. [110]. In
this study, Fe3O4@Au core–shell nanoparticles with a size of approximately 21 nm were
prepared using a simple sonochemical method. The obtained core–shell NPs showed
transverse relaxivity values of 222.28 mM−1 s−1 and have good potential for applications
in MRI and CT imaging.
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4.1.2. Magnetic Hyperthermia

Magnetic hyperthermia has been documented as a promising therapeutic approach
in cancer treatment. During these treatments, magnetic NPs provide heat to kill tumor
cells in the presence of an alternating current (AC) magnetic field [34,111]. Tumor cells
are destroyed upon the application of heat at 43 ◦C to 46 ◦C for a particular duration,
while healthy cells are less affected by these treatments [112,113]. For safe clinical re-
quirements, the product of the AC field amplitude and frequency should be smaller than
5 × 109 Am−1 s−1 [114]. Hence, Fe3O4 nanoparticles must meet two criteria to be utilized
as an efficient hyperthermal agent. First, they should achieve high heating efficiency under
the safe range of the AC field with a small dose of MNPs. Second, nanoparticles should
form stable colloids that allow intravenous injection or delivery to tumors via the blood-
stream. In addition, Fe3O4 NPs should be functionalized to enhance biocompatibility and
colloidal stability or conjugated with recognition molecules for specific target molecules.
Superparamagnetic NPs potentially represent a good candidate because they exhibit good
dispersion and a lack of aggregation due to their negligible coercivity values and remnant
magnetization. In contrast, SPM NPs can suffer from low heating power and require a
high dose of materials due to low saturation magnetization. Although ferrimagnetic NPs
exhibit high heating efficiency, stable colloids of these NPs are difficult to prepare due
to the strong magnetic dipole interactions of ferromagnetic particles. The mechanism of
heat generation is governed by the hysteresis loss mechanism for ferro- and ferrimagnetic
NPs [35]. Meanwhile, Néel and Brown relaxations are the main heating mechanisms for
superparamagnetic NPs. The specific absorption rate (SAR), also called the specific loss
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power (SLP), is measured by calculating the rate of absorbed energy per unit of mass in
W/g to evaluate the heating efficiency of NPs.

Numerous studies have investigated the effects of the size, geometry, and anisotropic
properties of magnetite NPs on their hyperthermia performance under different AC mag-
netic field conditions. In one study, 26 nm Fe3O4 spheres (diameter) and cubes (edge)
prepared using solvothermal methods exhibited a much higher SAR value, especially when
increasing the magnetic field amplitude [71]. A more comprehensive study of the effects
of the Fe3O4 nanocrystal sizes and geometries on heating efficiency was conducted by
Nemati et al. [41]. Spherical and cubic Fe3O4 NPs with sizes ranging from 10 to 100 nm
were synthesized, and their heating efficiency was evaluated. At 800 Oe and 310 kHz, the
optimum sizes of nanospheres for hyperthermia range from 30 to 50 nm (650 W/g), and
nanocubes with sizes ranging from 30 to 35 nm are better heaters. Furthermore, the study
suggested that nanocubes supply more heat than nanospheres with a size smaller than
35 nm, while nanospheres with a size larger than 35 nm are better heating agents. The
hyperthermia performance of Fe3O4 nanocubes with sizes ranging from 13 to 40 nm was
recorded at different magnetic field amplitudes from 2.3 to 30 kAm−1, with three different
frequencies of 320, 520, and 720 kHz [52]. The 19 nm cubes show the highest SAR values at
all frequencies, which can reach 2452 W/g at 520 kHz and 29 kAm−1. Additionally, studies
of the magnetic properties showed that 19 nm nanocubes are located at the transition
point from superparamagnetic to ferrimagnetic, consistent with the hypothesis proposed in
previous studies for the higher SAR value of iron oxide nanoparticles in this transition size
range [115]. Muro-Cruces and coworkers also compared the heating efficiency of nanocubes
with sizes of 13, 15, and 19 nm and 22 nm spherical NPs at 17 kA/m and 183 kHz and
obtained the best heating efficiency for 19 nm cubic Fe3O4 nanocrystals [74]. However,
other measurements were conducted at different frequencies, such as 109, 220, and 300 kHz,
for a similar size range (14 to 35 nm) of Fe3O4 nanocubes and produced a slightly different
result [44]. Nanocubes with sizes of 19 and 24 nm showed the best SAR value under most
of the measured conditions and saturated at approximately 18 kAm−1; however, 35 nm
cubes showed higher SAR values at magnetic field amplitudes of 20–24 kAm−1. Das et al.
synthesized Fe3O4 nanorods, nanocubes, and nanospheres with comparable volumes and
determined that nanorods achieve a higher SAR value of 862 W/g, which is much higher
than nanocubes (314 W/g) and nanospheres (140 W/g) [40]. Furthermore, increasing the
aspect ratio of nanorods was proven to help increase the SAR value of magnetite nanorods.
Thus, the heating efficiency of magnetite nanoparticles is affected by the shape and size of
the nanoparticles and remarkably depends on the frequency and amplitude of the applied
AC magnetic field.

Functionalization of Fe3O4 NPs or core–shell architectures was studied to further
enhance the heating performance, biocompatibility, and stability of colloids. Bae et al. syn-
thesized chitosan oligosaccharide-coated packs of four to ten 30 nm-sized Fe3O4 nanocubes
and investigated the hyperthermia activity [116]. These particle cluster-coated chitosan
nanoparticles exhibited a superior magnetic heating ability with a high specific loss power
of 2614 W/g, which is much higher than that of commercial Feridex nanoparticles (83 W/g).
Chitosan oligosaccharide was used to improve colloidal stability and blood circulation
in vivo. Continuing the particle clustering strategy to enhance magnetic hyperthermia,
Niculaes et al. studied the effect of individual nanocubes, dimers or trimers (two or three
nanocubes), and centrosymmetric clusters (more than four nanocubes) on SAR values [117].
TEM images of monomers, dimers, trimers, and centrosymmetric clusters are shown in
Figure 9a–c. The prepared nanocubes stabilized with oleic acid were coated with the
amphiphilic copolymer poly(styrene-comaleic anhydride). The degree of clustering was
controlled by the ratio of polymer/surface area of nanocubes, as illustrated in Figure 9d.
The SAR data shown in Figure 9e indicate that the dimers and trimers exhibit the best
heating efficiency. In another study, Zyuzin et al. confined nanocubes inside submicrometer
cavities to preserve magnetic heat losses in an intracellular environment [118]. Another
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study of 2D assemblies of magnetic nanocubes exploited enzymatic polymer disassembly
to improve magnetic hyperthermia heat losses [119].
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Interestingly, Espinosa et al. utilized 20 nm Fe3O4 nanocubes with a dual capacity to
act as both magnetic and photothermal agents [120]. Upon exposure to an AC magnetic
field and near-infrared laser irradiation, an aqueous suspension of magnetite nanocubes
achieved an unprecedented heating power up to 5000 W/g. The dual mode of mag-
netic hyperthermia and photothermia resulted in complete apoptosis-mediated cell death
and complete solid tumor regression in vivo. Lavorato et al. synthesized monodisperse
core–shell nanoparticles Fe3O4@CoxZn1−xFe2O4, and by controlling the thickness and
composition of the shell, the water colloid of these NPs exhibited a large heating power up
to 2400 W/g under an 80 mT magnetic field with a frequency of 309 kHz [121]. Lak and
coworkers studied the phase transformation of 23 nm FeO@Fe3O4 core–shell nanocubes
and their magnetic heating performance. This study identified the roles of subdomains of
FeO, Fe2+ deficiencies, and structural defects in the up to 10-fold increase in the magnetic
losses of the nanocubes, resulting in excellent heating efficiency compared to pure mag-
netite phase nanocubes [122]. Therefore, studies have shown that the sizes, geometries,
and nanostructures of Fe3O4 NPs are three main factors that determine their magnetic
heating capability.

4.1.3. Drug Delivery

An increasingly applied solution for the efficient utilization of drugs against target
pathogens with minimum doses is drug delivery. Fe3O4 NPs are used as drug carriers in
drug delivery applications due to the combinations of their multiple valuable properties,
such as a strong magnetic response, low toxicity, biodegradability, biocompatibility, and
inexpensiveness [123]. Furthermore, facile syntheses, easily functionalized surfaces for
bioconjugate coatings or enhanced colloidal stability, and the capability to be guided
under a magnetic field make Fe3O4 NPs an excellent candidate for drug delivery. In
addition, the pristine magnetic properties for MRI imaging or hyperthermia of Fe3O4
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can be integrated to achieve multifunctional NPs for drug delivery. Fe3O4 nanocarriers
are usually functionalized with polymers (e.g., pH-responsive polymers) to control drug
release, biomolecules for targeting ligand–receptor species, and biocompatible porous
shells (e.g., SiO2) for drug loading. Cheng et al. prepared 16 nm porous hollow Fe3O4 NPs
with opening pores of 2–4 nm for cisplatin (an anticancer drug) storage and release [87].
The release rate of the anticancer drug cisplatin increased further at pH values lower than
6 due to acidic etching of the NP pores. These NPs were also coupled with Herceptin to
target breast cancer cells. Poly(acrylic acid) (PAA), a pH-responsive polymer, was loaded
into hollow 200 nm-diameter Fe3O4 NPs to obtain the pH-triggered and magnetic-targeted
drug delivery of the anticancer drug doxorubicin [124]. Moreover, rattle-type Fe3O4@SiO2
hollow mesoporous spheres were synthesized with different sizes and different thicknesses
of the mesoporous shell using carbon templates [125]. These NPs showed no toxicity up
to a concentration of 150 µg/mL and were able to load the anticancer drug doxorubicin
hydrochloride into their hollow mesopores. Folic acid, a receptor-specific ligand for the
targeted delivery of anticancer drugs, was further loaded on rattle-type Fe3O3@SiO2 hollow
mesoporous spheres to achieve a combination of receptor-mediated targeting and magnetic
targeting [126]. Qiu and coworkers introduced the ZnO interlayer as a microwave absorber,
forming a novel Fe3O4@ZnO@SiO2 drug carrier that controls the release of cancer drugs
upon exposure to microwave irradiation [127]. Special Janus nanocomposites with dual
surface functionalization of polystyrene@Fe3O4@SiO2 were synthesized by Wang et al. for
tumor cell targeting and stimulus-induced drug release [128]. Based on these examples,
Fe3O4 nanoparticles with magnetic properties, facile synthesis of hollow nanostructures,
and easily functionalized surfaces are promising platforms for drug delivery applications.

4.1.4. Multifunctional Nanoparticles in Biomedical Applications

The potential of applying Fe3O4 NPs in biomedical applications is not limited to single
functional agents, such as contrast agents, heating agents (hyperthermia), or drug carrier
nanospecies. Surface functionalization and core–shell structures of Fe3O4 NPs achieve
multifunctional nanoagents with maximal activity in biomedical applications that integrate
both therapeutic and diagnostic technologies in an Fe3O4 NP-based system. For exam-
ple, MRI contrast agents and hyperthermia agents based on Fe3O4 nanostructures have
also been used for drug delivery or integrated with biological substances and fluorescent
molecules to enhance functionality in disease treatment and imaging. Immobilization of hu-
man tissue plasminogen activator (tPA) and bovine serum albumin on a cluster of multiple
20 nm Fe3O4 nanocubes was reported by Voros et al. for the preparation of multifunctional
thrombolytic and MRI contrast nanoagents [129]. These nanoagents exhibited excellent
thrombolytic activity and can potentially be applied for imaging vascular thrombi. The
dissolution rate of clots was increased approximately 100-fold compared to free tPA due to
the intimate interaction of tPA with the fibrin network and achieved an additional 10-fold
increase through localized heating upon exposure to an alternating magnetic field. Lai
and coworkers synthesized Fe3O4@SiO2 core–shell nanoparticles integrated with phospho-
rescent iridium complexes for three-in-one purposes of MRI, luminescence imaging, and
photodynamic therapy [130]. Highly uniform superparamagnetic Fe3O4 NPs with an aver-
age size of 12 nm were coated with porous, biocompatible SiO2 shells before the iridium
complexes were incorporated into the SiO2 matrix. Phosphorescent iridium complexes
serve as dual functional agents, including photosensitizers, to generate singlet oxygen (1O2)
for inducing cancer cell apoptosis and as luminescence agents for luminescence imaging.
In a recent study aiming to prepare a dual-modality magnetic resonance and fluorescence
unified imaging platform performed by Bao and colleagues [131], lipid-encapsulated Fe3O4
NPs were combined with dialkylcarbocyanine dyes before being integrated with surface
peptide bioconjugation. The nanoprobes were used for stable, high-contrast MRI scans,
near-infrared fluorescence imaging, and fluorescence microscopy.

A novel magnetic nanocatalyst constructed from glucose oxidase (GOD)-loaded Fe3O4
hollow NPs as starvation–chemodynamic–hyperthermia synergistic therapy for tumors was



Appl. Sci. 2021, 11, 11301 23 of 34

reported by Ying et al. [89]. Figure 10 illustrates the working principle of the nanocatalysts.
Ferrous cations generate the reactive oxygen species (ROS) OH radicals from H2O2 via the
Fenton reaction and subsequently induce cell apoptosis by chemodynamic therapy. GOD
consumes glucose, which is an important nutrient in tumor tissues, resulting in tumor
tissue starvation during therapy and the generation of an excess amount of H2O2 to further
enhance the Fenton reaction in terms of chemodynamic activity. Moreover, GOD-loaded
hollow Fe3O4 NPs can be heated under an AMF for hyperthermia treatment. In addition
to utilizing Fe3O4 nanoparticles as the main core for further functionalization purposes,
active MRI and hyperthermic Fe3O4 NPs have been grafted onto the surface of Er3+/Yb3+-
doped NaYF4@SiO2@AuNP core–shell nanoparticles to obtain near-infrared and magnetic-
responsive nanocomposites for hyperthermia treatment [132]. Combining an active optical
heater Er3+/Yb3+-doped YPO4 nanophosphor with magnetic hyperthermia Fe3O4 agents
into a hybrid material Er3+/Yb3+-doped YPO4@Fe3O4 enhances the hyperthermic activity
and ability to recover the material [133].
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4.2. Biosensing

Magnetic nanoparticle-based solutions for biosensing have been widely studied, and
significant progress has been achieved [7]. In general, magnetic NPs have been used for
labeling magnetic signals for various biological sensing purposes such as biomolecular
detections based on ligand–receptor binding of biological substances. In these systems,
the magnetic NPs are functionalized for facile conjugation with biomarkers. The magnetic
signals can be detected by different magnetic detection techniques including spintronic
sensors, nuclear magnetic resonance sensors, atomic magnetometer-based sensors, and
superconducting quantum interference devices. Various types of magnetic responses can
be used for detection depending on the sensing purposes and detection techniques such as
relaxation, remnant magnetization, susceptibility, induced 1H NMR, and frequency mixing.
In-depth methods for functionalization of magnetic particles, strategies for bioconjugation,
and designs of magnetic detection for magnetic particle-based biosensing platforms were
summarized in the reviews of Chen et al. [7] and Hsing et al. [134].

Due to their strong magnetic properties, biocompatibility, and facile functionalized
surface, Fe3O4 nanoparticles have been utilized in various biosensor platforms [135–138].
Various biosensing platforms utilizing Fe3O4 NPs were summarized in the review by
Kim et al. [139]. The magnetic properties, sizes, morphologies, and crystallinity of NPs are
important factors defining the performance of Fe3O4 nanoparticle-based sensing systems.
Lee and colleagues examined the biosensing performance of Fe3O4 nanoparticles from
two aspects: the sizes and geometries of NPs (cubes and spheres) [42,43]. As an approach
to study the size effect of NPs in biosensing, three different sizes of 120, 440, and 700 nm
Fe3O4 nanospheres with comparable degrees of crystallinity (grain size ~17–18 nm) were
synthesized, coated with SiO2, functionalized with poly(acrylic) acid (PAA) before conju-
gation with streptavidin, and utilized to detect specific proteins. As shown in Figure 11a,
larger spherical NPs exhibit better magnetic signals and surprisingly better performance
than commercial magnetic beads (2.8 µm size) in an experiment detecting the well-known
streptavidin–biotin interaction. In addition, the streptavidin-conjugated magnetic NPs
were further combined with an exchange-induced remnant magnetization (EXIRM) plat-
form for the specific detection of two immunoglobulins G (IgG1 and IgG2a) bound to
Protein A. Figure 11b shows a schematic illustrating protein-immunoglobulin exchange
detection using EXIRM measurements. Protein A has a stronger affinity for IgG2a than
IgG1. Therefore, Protein A is immobilized covalently on the glass surface and then attaches
to biotinylated IgG1, followed by the attachment of streptavidin-coated NPs to bound
biotinylated IgG1. With stronger affinity for Protein A, IgG2a is then introduced, causes an
exchange reaction, and influences the magnetization signal. Figure 11c shows that larger
MPs exhibit larger slopes, and magnetic NPs with a size of 120 nm show equivalent signals
to commercial magnetic beads. The combination of the larger size and strong magnetic
properties of functionalized NPs increases the sensitivity by up to 9-fold compared with
commercial magnetic beads and achieves a high detection specificity.

In addition to the importance of appropriate sizes in biosensing, the morphology of
NPs has been identified as an important parameter for efficient biosensing performance.
Kolhatkar et al. synthesized spherical and cubic Fe3O4 NPs with multiple domains and
sizes ranging from 100 to 225 nm and studied their crystallinity, magnetic properties, and
biosensing performance using force-induced remnant magnetization force spectroscopy
(FIRMS). By comparing the magnetic properties of same-volume and same-body diago-
nal/diameter nanoparticles, cubic NPs exhibited 1.4–3.0 and 1.1–8.4 times higher values
for saturation magnetization (MS) and coercivity (HC), respectively. The structural analysis
revealed that the high crystallinity of nanocubes explained the enhanced magnetic proper-
ties. The author also functionalized these NPs with biotin and used FIRMS to study their
binding to the streptavidin-modified surface. Upon applying a 1 pN force, the number of
particles remaining on the functionalized surface and the magnetization response of the
nanocubes were much better than those of the nanospheres, as indicated in Figure 12b,c.
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Thus, the increase in the signal and stronger attachment to the surface can be explained by
the difference in magnetic strength and the contact surface area (Figure 12a).
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4.3. Environmental Applications

Fe3O4 nanoparticles and their nanoarchitectures have been utilized for applications in
environmental treatments, such as heavy metal removal and adsorption/degradation of
organic pollutants [18]. In these applications, Fe3O4 NPs have been used as supporting
platforms that can easily be recovered/recycled by using magnetic separation techniques.
Inexpensiveness, easy fabrication, biocompatibility, and easy separation/recovery by mag-
netic fields are the advantages of using Fe3O4 nanoparticles in environmental applications.
However, easy agglomeration (for ferrimagnetic NPs) and oxidation are drawbacks that
can be overcome by applying an appropriate surface coating layer or functionalized surface.
The surface coating layer should be stable under harsh chemical conditions (e.g., acidic
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and basic conditions), have high thermal and mechanical stability, and be porous with
a high loading capacity for pollutants. In general, magnetically loaded adsorbents are
usually core–shell structures or composites of Fe3O4 with other oxides (e.g., SiO2, TiO2),
carbon-based materials (carbon, carbon nanotubes, and graphene), and polymers or or-
ganic molecules with a good affinity for heavy metals or organic pollutants. Zhang et al.
synthesized superparamagnetic Fe3O4@C core–shell nanoparticles with an average size of
~250 nm and studied the adsorption kinetics of two dyes, methylene blue (MB) and cresol
red (CR) [140]. The prepared magnetic NPs are dispersible in an aqueous solution, easily
separated from the solution using an external magnet, and have adsorption capacities for
MB and CR of 44.38 mg/g and 11.22 mg/g, respectively. Separately, carboxylatopillar [5]
arene-modified Fe3O4 nanoparticles synthesized using a one-pot solvothermal technique
exhibit excellent cationic dye separation over a wide range of pH values and can be recycled
by simple washing without decreasing the adsorption properties [141]. Khalaf examined
the ability of Fe3O4 nanocubes coated with SiO2 and TiO2 to remove Cr(VI) [142]. Ren and
coworkers also prepared ferrimagnetic Fe3O4@carbon composites and studied their perfor-
mance in both removing the heavy metal Cr(VI) and organic pollutant Congo red [143].
Furthermore, Fe3O4-functionalized nanoparticles and composites have been applied to
remove various heavy metal cations, such as Pb(II), Cd(II), Cu(II), Hg(II), As(III), and
Cr(III) [144–150], and organic pollutants, including rhodamine B, rhodamine 6G, methyl
orange, and oil [151–153]. Additionally, Fe3O4 NPs have been used as magnetic carriers for
photocatalyst materials (e.g., TiO2) to promote the photocatalytic degradation of organic
pollutants such as methylene blue and ofloxacin fluoroquinolone [154]. In general, Fe3O4
nanoparticles function as efficient magnetic carriers for absorbents or photocatalysts, which
provide recyclability, reusability, nontoxicity, and inexpensive materials for large-scale
wastewater treatments.

4.4. Energy Conversion and Storage Devices

Due to their various advantageous characteristics, such as low cost, natural abundance,
ecofriendliness, electrochemical activity, and high theoretical capacity, Fe3O4 is a potentially
useful anode material for supercapacitors and lithium-ion batteries. With good conduc-
tivity (102–103 Ω−1 cm−1) and a high theoretical capacitance (approximately 347 F/g at
1.2 V), Fe3O4 has been used in high-energy-density storage supercapacitors via redox reac-
tions [20,155]. Nanostructured materials constructed from Fe3O4 NPs and carbon-based
materials are promising hybrid materials that achieve a high energy density and robust elec-
trochemical performance. Several hybrid nanostructures, including a 3D network of Fe3O4
NPs/reduced graphene oxide nanosheets [156], Fe3O4@carbon nanosheets [157], Fe3O4
nanosphere-decorated graphene [158], and Fe3O4 nanospheres coated with nitrogen-doped
carbon [159], have produced encouraging results in the construction of high-performance
supercapacitors. Using Fe3O4 as a conductive core, nanocomposites of conductive ferroelec-
tric core–shell Fe3O4@BaTiO3 nanoparticles loaded into the ferroelectric poly(vinylidene
fluoride-cohexafluoropropylene) (P-(VDF-HFP)) polymer matrix were prepared to increase
the permittivity of the polymer and increase the degradation resistance of the polymer-
based capacitor. The maximum energy storage density of this thin film reaches 7.018 J/cm3

upon exposure to an electric field of 2350 kV/cm [160]. Similar core–shell Fe3O4@BaTiO3
NPs were also incorporated into a PVDF polymer matrix and exhibited a remarkable
energy density storage of 16 J/cc under an electric field of 430 kV/mm [161]. In addition
to capacitor/supercapacitor applications, Fe3O4 NPs have been integrated into various
nanoarchitectures/nanocomposites for use as anode materials for rechargeable lithium-ion
batteries. In these systems, Fe3O4 participates in an electrochemical reaction with lithium,
as indicated in Equation (3) below [162], which allows Li cation insertion/extraction. The-
oretically, the capacity of Fe3O4 can reach ~900 mA h g−1, which is even higher than the
capacity of commercial graphite (~372 mA h g−1). Optimizing the sizes and shapes of
nanoparticles [163–166] and fabricating carbon hybrid materials of Fe3O4 [167–170] effi-
ciently increase the conductivity, structural integrity, and performance of devices. Graphene
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nanosheet-wrapped Fe3O4 particles prepared by Zhou and coworkers showed improved
stability and an excellent rate [168]. Wei et al. designed 3D graphene foams (GFs) cross-
linked with graphene sheet (GS)-encapsulated Fe3O4 nanosphere Fe3O4@GS/GF, which
exhibited a high reversible capacity of 1059 mAh g−1 over 150 cycles [171]. Thus, due to its
superior properties, Fe3O4 represents a potential oxide material for integration into energy
conversion and storage devices.

Electrochemical reaction (3):

Fe3O4 + 8 Li+ + 8 e− ↔ 3Fe + 4 Li2O (3)

5. Conclusions

This review provides updates on recent progress and covers important aspects of
applied Fe3O4 NPs, including structures and synthesis, magnetic properties, strategies for
functionalization, and performance of Fe3O4-based NPs in various emerging applications.
The size/geometry–property relationship of NPs, size/geometry-application relationship,
and role of nanostructures in target applications were highlighted. The structures of
Fe3O4 NPs (sizes and geometries) and magnetic properties are two important features
that could be tailored by applying appropriate synthetic strategies. Consequently, the
sizes and geometries of magnetic Fe3O4 NPs are very important structural factors that
determine many properties of nanoparticles and their capabilities in various applications.
This review also provides a limited atlas for the selection of suitable synthetic methods
to obtain appropriate sizes, geometries, and magnetic properties of Fe3O4 NPs for target
applications. Moreover, recent progress in applying Fe3O4 nanoparticles in emerging
applications, such as diagnostic and therapeutic applications in the biomedical, biosensing,
environmental, and energy storage fields, has been summarized. The exploitation of
an appropriate structure of Fe3O4 NPs with the desired properties combined with the
additional contribution of coating materials, functionalization of the surface, and special
nanoarchitectures are crucial strategies to increase the performance of Fe3O4 NPs and
achieve multifunctional NPs. Thus, the exploration of Fe3O4 NPs with different sizes,
geometries, and integrated functionalities for multiple applications is an interesting field
of research that still retains endless opportunities for discovery.
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