

Polyhedron 20 (2001) 2129-2136

Synthesis, characterization and reactivity of ReOMe₂(bipy)X complexes

June-Ho Jung, Joon-Seo Park, David M. Hoffman* 1, T. Randall Lee* 2

Department of Chemistry, University of Houston, Houston, TX 77204-5641, USA

Received 22 August 2000; accepted 6 February 2001

Abstract

The complexes *cis*- and *trans*-ReOMe₂(bipy)Cl, where *cis* or *trans* refers to the Me–Re–Me regiochemistry, were observed to react as follows: (1) with the alkylating agents RMgCl (R = CH₂SiMe₃ and CH₂Ph) and RLi (R = Me) to give ReOMe₂(bipy)R, and (2) with the alkoxides NaOR' (R' = Me and Et) to give *trans*-ReOMe₂(bipy)(OR'). The complex ReOMe₂(bipy)CH₂SiMe₃ was observed by ¹H NMR spectroscopy to undergo *trans* to *cis* isomerization, which proceeded via reversible first-order kinetics, with $\Delta H^{\circ} = 1.60(4)$ kcal mol⁻¹ and $\Delta S^{\circ} = 3.7(1)$ eu. At room temperature, $\Delta G^{\circ} = 0.5(1)$ kcal mol⁻¹ and $K_{eq} = 0.42(2)$, indicating a weak thermodynamic preference for the *trans* isomer. The activation parameters for the *trans* to *cis* isomerization were $\Delta H_1^{\dagger} = 26(2)$ kcal mol⁻¹ and $\Delta S^{\ddagger}_{-1} = 10(7)$ eu, and those for the reverse *cis* to *trans* isomerization were $\Delta H^{\ddagger}_{-1} = 27(2)$ kcal mol⁻¹ and $\Delta S^{\ddagger}_{-1} = 14(7)$ eu. Treatment of a mixture of *cis*- and *trans*-ReOMe₂(bipy)CH₂SiMe₃ with anhydrous HCl gave ReOMe(bipy)(CH₂SiMe₃)Cl; similar treatment of ReOMe₃(bipy) and ReOMe₂(bipy)CH₂Ph gave *cis*-ReOMe₂(bipy)Cl. Exposure of ReOMe(bipy)(CH₂SiMe₃)Cl to AgPF₆ in acetonitrile-d₃ gave the cationic nitrile adduct [ReOMe(bipy)-(CH₂SiMe₃)(CD₃CN)][PF₆]. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Rhenium(V); Oxo-alkyl; 2,2'-Bipyridine; Cis-trans isomerization

1. Introduction

Transition-metal alkyl complexes are used to catalyze a variety of important organic transformations such as α -olefin oligomerization and polymerization [1]. Mechanistic studies have shown, for example, that the polymerization of ethylene by cationic d⁰ Ti and Zr complexes proceeds via the intermediacy of alkyl-metal species [2]. The recent use of late transition-metal complexes as catalyst precursors for the Ziegler–Natta polymerization of olefins [3–8] prompted us to examine the development of rhenium alkyl complexes for this purpose [9,10]. We report here the synthesis of ReOMe₂(bipy)R (R = CH₂SiMe₃, CH₂Ph, and Me) and ReOMe(bipy)(CH₂SiMe₃)Cl, explore the kinetics and

¹ Corresponding author.

mechanism(s) of the reversible isomerization between *cis*- and *trans*-ReOMe₂(bipy)CH₂SiMe₃, and show that the removal of the chloride ligand from ReOMe(-bipy)(CH₂SiMe₃)Cl in acetonitrile-d₃ affords the corresponding cationic Re(V) alkyl complex, [ReOMe-(bipy)(CH₂SiMe₃)(CD₃CN)][PF₆]. We also prepare and characterize two *trans*-ReOMe₂(bipy)(OR') complexes.

2. Results and discussion

Scheme 1 summarizes the synthesis of the $ReOMe_2(bipy)R$ and trans- $ReOMe_2(bipy)(OR')$ complexes starting from a mixture of trans- $ReOMe_2$ -(bipy)Cl (1a) and cis- $ReOMe_2(bipy)Cl$ (1b). For these reactions, the products and the yields were indistinguishable regardless of whether trans (1a) or cis (1b) was used as the starting material. Therefore, to simplify our synthetic efforts, we typically employed a mixture [9] of 1a and 1b in the reactions reported here.

 $^{^2}$ Corresponding author. Tel.: +1-713-7432724; fax: +1-713-7432726; E-mail address: trlee@uh.edu

2.1. Reactions of ReOMe₂(bipy)Cl with Me₃SiCH₂MgCl and PhCH₂MgCl

The reaction of a mixture of **1a** and **1b** with Me_3SiCH_2MgCl in diethyl ether afforded a mixture of *trans*-ReOMe_2(bipy)CH_2SiMe_3 (**2a**) and *cis*-ReOMe_2-(bipy)CH_2SiMe_3 (**2b**) in ~ 50% crude yield (Eq. (1)). The pure *trans* isomer **2a** was isolated from the mixture by precipitation as a blue solid from hexanes upon cooling to $-78^{\circ}C$. The *cis* isomer **2b**, which remained dissolved in the supernatant at $-78^{\circ}C$, could not be separated as a pure compound due to rapid equilibration between the two isomers. At room temperature,

both compounds were observed to be soluble in organic solvents and moderately air stable.

The ¹H NMR spectrum of **2a** in benzene-d₆ exhibited resonances corresponding to the bipy ligand and a singlet at δ 2.67 corresponding to the methyl groups. The CH₂SiMe₃ fragment gave rise to two singlets at δ 4.81 (CH₂Si) and 0.69 (SiMe₃). The ¹³C{¹H} NMR spectrum of **2a** showed a resonance at δ 41.5, which was assigned to the methylene carbon, and resonances at δ 9.4 and 2.1, which were assigned to the methyl carbons attached to rhenium and silicon, respectively. These data are consistent with a *trans*-Me–Re–Me geometry. We assigned the strong band in the IR spectrum at 978 cm⁻¹ to the terminal Re=O stretch [11–14].

Upon heating **2a** in benzene, an equilibrating mixture of **2a** and **2b** could be observed by ¹H NMR spectroscopy. The room temperature ¹H NMR spectrum of **2b** in benzene-d₆ exhibited eight resonances arising from the bipy ligand and two distinct singlets at δ 3.88 and 2.78 arising from the two non-equivalent methyl groups. The CH₂SiMe₃ fragment gave rise to two doublets at δ 3.40 and 2.35 (corresponding to the AB quartet arising from the diastereotopic CH₂ group; $J_{gem} = 11$ Hz) and a singlet at δ 0.46 (SiMe₃). The ¹³C{¹H} NMR spectrum of **2b** showed a resonance at δ 26.4 (assigned to the methylene carbon), resonances at

Scheme 1. Summary of the synthetic work starting from a mixture of 1a and 1b.

stretch [11-14].

Table 1 Kinetic and thermodynamic data for the reversible *cis-trans* isomerization of **2a** and **2b**

<i>T</i> (°C)	K _{eq}	$10^3 k_{\rm obs}$ (min ⁻¹)	$\frac{10^3 k_1}{(\min^{-1})}$	$\frac{10^3 k_{-1}}{(\min^{-1})}$
55 60 65 75	$\begin{array}{c} 0.56 \pm 0.01 \\ 0.57 \pm 0.02 \\ 0.59 \pm 0.02 \\ 0.64 \pm 0.01 \end{array}$	$18.8 \pm 0.1 \\ 27.2 \pm 0.6 \\ 52 \pm 2 \\ 190.0 \pm 0.5$	$\begin{array}{c} 6.71 \pm 0.01 \\ 9.9 \pm 0.2 \\ 19.2 \pm 0.8 \\ 74.1 \pm 0.2 \end{array}$	$\begin{array}{c} 12.06 \pm 0.01 \\ 17.3 \pm 0.4 \\ 32 \pm 1 \\ 115.9 \pm 0.3 \end{array}$

Fig. 1. van't Hoff plot of the reversible cis-trans isomerization of **2a** and **2b** over the temperature range 55–75°C.

 δ 21.7 and 12.9 (assigned to the two non-equivalent methyl carbons attached to rhenium), and a resonance at δ 2.0 (assigned to the three equivalent methyl carbons attached to silicon). These data are consistent with a *cis*-Me-Re-Me geometry. We assigned the strong band in the IR spectrum at 982 cm⁻¹ to the terminal Re=O stretch [11–14].

Treatment of a mixture of **1a** and **1b** with PhCH₂MgCl in toluene at -78° C gave *cis*-ReOMe₂(bipy)CH₂Ph (**3**), which could be precipitated from hexanes by cooling to -78° C, affording a blue powder in $\sim 53\%$ yield. Compound **3** was found to be stable upon heating to 75° C in benzene-d₆, and showed no evidence of *cis* to *trans* isomerization.

The ¹H NMR spectrum for **3** in benzene-d₆ exhibited the expected resonances arising from the bipy ligand and two distinct singlets at δ 3.97 and 2.90 arising from the two non-equivalent methyl groups. The CH₂Ph ligand gave rise to two doublets at δ 5.73 and 3.94 (corresponding to the AB quartet arising from the diastereotopic CH₂ group; $J_{gem} = 12$ Hz). The ¹³C{¹H} NMR spectrum of **3** showed a resonance at δ 32.4, which was assigned to the methylene carbon, and reso-

2.2. Reaction of ReOMe₂(bipy)Cl with MeLi

The reaction of a mixture of **1a** and **1b** with MeLi in CH_2Cl_2 at $-78^{\circ}C$ gave ReOMe₃(bipy) (4) as a blue– green powder in 92% yield (see Scheme 1). The ¹H NMR and IR spectroscopic data were consistent with those reported previously for this complex [12,15].

2.3. Reaction of ReOMe₂(bipy)Cl with sodium alkoxides

Treatment of a mixture of **1a** and **1b** in either benzene or toluene with an excess of sodium methoxide or ethoxide gave dark green *trans*-ReOMe₂(bipy)(OR') complexes in low yields (Eq. (2)).

The compounds **5a** and **5b** were soluble in benzene and toluene and slightly soluble in hexanes. The ¹H and ¹³C{¹H} NMR spectra of **5a** and **5b** were consistent with a *trans*-Me–Re–Me geometry, and no *trans* to *cis* isomerization was detected (cf. **3**). The strong bands in the IR spectra of **5a** at 949 cm⁻¹ and of **5b** at 951 cm⁻¹ were assigned to the terminal Re=O stretches [11–14].

2.4. Kinetics of the reversible cis-trans isomerization of **2a** and **2b**

Complexes **2a** and **2b** were observed to exist as an equilibrium mixture in solution. Upon dissolving pure **2a** in benzene-d₆, the rate of equilibration (or isomerization) was observed to increase with increasing temperature. To further examine the process, we monitored the rate of isomerization of **2a** to **2b** by ¹H NMR spectroscopy. Both the loss of **2a** and the appearance of **2b** could be modeled using standard reversible first-order kinetics [16]. The kinetic and thermodynamic data obtained from this model are listed in Table 1. The equilibrium constants indicate that **2a** is thermodynamically favored in this equilibrium. Fig. 1 shows a van't Hoff plot of $\ln(K_{eq})$ versus 1/T, which gives $\Delta H^{\circ} = 1.60(4)$ kcal mol⁻¹ and $\Delta S^{\circ} = 3.7(1)$ eu. Fig. 2 shows Eyring plots of $\ln(k_1/T)$ versus 1/T and $\ln(k_{-1}/T)$

versus 1/T, which provide activation parameters of $\Delta H_1^{\ddagger} = 26(2)$ kcal mol⁻¹ and $\Delta S_{-1}^{\ddagger} = 10(7)$ eu for the forward isomerization and $\Delta H_{-1}^{\ddagger} = 27(2)$ kcal mol⁻¹ and $\Delta S_{-1}^{\ddagger} = 14(7)$ eu for the reverse process.

We previously reported analogous kinetic studies of the *cis-trans* isomerization of $\text{ReOMe}_2(\text{bipy})\text{Cl}$ [9]. Given the similarities of the two systems, we believe that the mechanism of the present isomerization is analogous to that proposed for the $\text{ReOMe}_2(\text{bipy})\text{Cl}$ system [9]. assigned to the terminal Re=O stretch [11–14]. The ¹³C{¹H} NMR spectrum of **6** exhibited a resonance at δ 43.3, which were assigned to the methylene carbon, and resonances at δ 2.0 and 1.3, which was assigned to the methyl carbons attached to rhenium and silicon, respectively. Comparison of the ¹³C{¹H} NMR spectrum of **6** to that of **4** and of ReO(CH₂SiMe₃)₃(bipy) [17] suggests that that **6** possesses structure **6a**, although structures **6b** and **6c** cannot be ruled out. Repeated attempts to obtain crystals of **6** suitable for X-ray crystallographic analysis were unsuccessful.

2.5. Reaction of ReOMe₂(bipy)R with anhydrous HCl

After bubbling anhydrous HCl for 1 min into a mixture of **2a** and **2b** dissolved in CH_2Cl_2 , the complex ReOMe(bipy)(CH_2SiMe_3)Cl (**6**) was isolated as a red-purple powder in ~ 90% yield (Eq. (3)).

The ¹H NMR spectrum of **6** in CD₂Cl₂ exhibited a resonance at δ 4.66 arising from the methyl group attached to rhenium, and the CH₂SiMe₃ ligand gave rise to two doublets at δ 7.34 and 6.92 (corresponding to the AB quartet arising from the diastereotopic CH₂ group; $J_{gem} = 7$ Hz) and a singlet at δ 0.16 (SiMe₃). The strong band in the IR spectrum at 993 cm⁻¹ was

Fig. 2. Eyring plots of the reversible cis-trans isomerization of **2a** and **2b** over the temperature range 55–75°C.

Similar treatment of **3** and **4** with anhydrous HCl in CH_2Cl_2 afforded *cis*-ReOMe₂(bipy)Cl (**1b**) as the exclusive product as judged by ¹H NMR spectroscopy. Consequently, it appears that for these trialkyl rhenium complexes, the $-CH_2Ph$ group is more readily lost from the Re center than is the $-CH_3$ group, which is lost more readily than the $-CH_2SiMe_3$ group.

2.6. Reaction of $ReOMe(bipy)(CH_2SiMe_3)Cl$ with $AgPF_6$

Treatment of **6** with AgPF₆ in acetonitrile-d₃ gave the green salt [ReOMe(bipy)(CH₂SiMe₃)(CD₃CN)][PF₆] (7) in ~99% yield as judged by ¹H NMR spectroscopy (Eq. (4)).

$$6 + AgPF_6 \xrightarrow[CD_3CN]{} OBC$$

 $[\text{ReOMe(bipy)(CH}_2\text{SiMe}_3)(\text{CD}_3\text{CN})][\text{PF}_6] + \text{AgCl} \quad (4)$

The salt was isolated as a dark blue-green oily powder that was insoluble in benzene, toluene, and hexanes. The salt was thermally stable to 60°C in acetonitrile, but readily decomposed when exposed to air. At room temperature under nitrogen in the solid state, the salt turned from a blue-green oily powder to a dark brown residue that was not characterized. The ¹H NMR spectrum for 7 in acetonitrile-d₃ exhibited a singlet at δ 4.43 arising from the methyl group attached to rhenium as well as the expected aromatic resonances. The CH₂SiMe₃ ligand gave rise to two doublets at δ 7.26 and 6.80 (corresponding to the AB quartet arising from the diastereotopic CH_2 group; $J_{gem} = 8$ Hz) and a singlet at δ 0.12 (SiMe₃). The ¹³C{¹H} NMR spectrum of 7 showed a resonance at δ 42.8, which was assigned to the methylene carbon, and a resonance at δ 11.9, which was assigned to the methyl carbon attached to rhenium. The methyl carbons of SiMe₃ could not be assigned due to overlapping resonances from CD₃CN at δ 1.3. We assigned the band in the IR spectrum at 2272 cm⁻¹ to the C=N stretch of coordinated acetonitrile, which is distinct from the C=N bands of free acetonitrile (2294 and 2255 cm⁻¹) [18]. The IR spectrum also exhibited broad overlapping bands over the region 790–1000 cm⁻¹, precluding definitive assignment of the Re=O stretch. This latter spectral feature has been observed in related cationic rhenium(V) oxo-alkyl complexes [12]. From spectroscopic data alone, we cannot distinguish between the three plausible isomers of 7 shown below. We were unable to obtain crystals of 7 that were suitable for X-ray crystallographic analysis.

ReOMe₂(2,2'-bipyridine)Cl (0.10 g, 0.24 mmol) was dissolved in diethyl ether (50 ml). The solution was frozen in liquid nitrogen, and Me₃SiCH₂MgCl (0.25 mmol) was added via microsyringe. The mixture was allowed to warm slowly to room temperature (r.t.). The solution gradually turned green over a period of 12 h. The green mixture was then filtered through a glass frit to remove a fine dark precipitate. The solvent was removed under vacuum, and the residue was extracted with hexanes (4 × 6 ml). The extracts were combined, and the volatiles removed under vacuum, giving a mixture of *cis*

3. Conclusions

The results presented here demonstrate a facile approach to the synthesis of a new class of rhenium oxo-alkyl complexes that contain chelating nitrogen ligands. Alkyl and alkoxide substitution of the chlorine atom from ReOMe₂(bipy)Cl affords rhenium(V) oxo-trialkyl and alkoxide complexes, respectively. The oxo-trialkyl compounds react with anhydrous HCl to give halogenated complexes. Abstraction of the chlorine atom from ReOMe(bipy)(CH₂SiMe₃)Cl with AgPF₆ in CD₃CN affords the cationic rhenium(V) oxo-alkyl complex [ReOMe(bipy)(CH₂SiMe₃)(CD₃CN)][PF₆].

4. Experimental

Unless otherwise stated, all reactions were performed using standard Schlenk and glovebox techniques. All glassware was either flame-dried under argon or ovendried. Solvents were purified by standard techniques and stored over molecular sieves under argon. The compounds *trans*-ReOMe₂(bipy)Cl (**1a**) and *cis*-ReOMe₂(bipy)Cl (**1b**) were prepared as described previously [9]. Nuclear magnetic resonance (NMR) spectra were recorded on a General Electric QE-300 MHz instrument and referenced internally to the known resonances of the solvents. High resolution mass spectrometry (HRMS) was performed at Rice University on a Finniganmat MAT 95 spectrometer operating in the EI mode.

4.1. Preparation of ReOMe₂(bipy)(CH₂SiMe₃) (**2a** and **2b**)

In a Schlenk flask, a mixture of cis- and trans-

and *trans* isomers as a dark blue–green powder (0.05 g, 50%). The dark blue–green powder was re-dissolved in hexanes (15 ml), and the volume of the solution was reduced by ca. a half. A blue precipitate formed after cooling the resulting solution for 6 h at -78° C. The green supernatant was removed via cannula, and the residue was dried under vacuum to give pure *trans*-ReOMe₂(bipy)(CH₂SiMe₃) (**2a**) as a blue solid (yield 0.03 g, 30%). A mixture of *cis*- and *trans*-ReOMe₂(bipy)(CH₂SiMe₃) in a 9:1 ratio (**2b**:**2a**, respectively) was further obtained as a green powder by removing the volatiles from the supernatant under vacuum.

4.1.1. Analytical data for

trans-ReOMe₂(bipy)CH₂SiMe₃ (2a)

¹H NMR (C_6D_6): δ 8.88 (dd, 1H, $J_{HH} = 5$, $J_{HH} = 3$ Hz, bipy), 7.93 (d, 1H, $J_{HH} = 6$ Hz, bipy), 7.17 (dd, 1H, $J_{HH} = 6$, $J_{HH} = 4$ Hz, bipy), 6.72 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.50 (dt, 1H, $J_{HH} = 7$, $J_{HH} = 1$ Hz, bipy), 6.19 (m, 2H, bipy), 5.87 (dt, 1H, $J_{HH} = 7$ Hz, $J_{HH} = 1$ Hz, bipy), 4.81 (s, 2H, CH_2SiMe_3), 2.67 (s, 6H, $ReMe_2$), 0.69 (s, 9H, CH_2SiMe_3). ¹³C{¹H} NMR (C_6D_6): 151.0, 150.6, 147.3, 146.5, 135.8, 135.2, 123.0, 121.6, 121.3, 121.1, 41.5 (CH_2SiMe_3), 9.4 ($ReMe_2$), 2.1 (CH_2SiMe_3). IR (KBr, Nujol, cm⁻¹): 1603 s, 1311 w, 1238 m, 1159 w, 1157 w, 1018 w, 978 s, 954 s, 851 s, 835 s, 758 s, 740 m, 723 m. *Anal.* Calc. for $C_{16}H_{25}N_2OSiRe$: C, 40.40; H, 5.30; N, 5.89. Found: C, 40.72; H, 5.21; N, 5.89%.

4.1.2. Analytical data for cis-ReOMe₂(bipy)CH₂SiMe₃(2b)

¹H NMR (C₆D₆): δ 8.81 (d, 1H, $J_{HH} = 6$ Hz, bipy), 7.77 (d, 1H, $J_{HH} = 5$ Hz, bipy), 7.19 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.72 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.56 (dt, 1H, $J_{HH} = 8$, $J_{HH} = 1$ Hz, bipy), 6.27 (dt, 1H, $J_{HH} = 6$, $J_{\rm HH} = 1$ Hz, bipy), 6.18 (dt, 1H, $J_{\rm HH} = 8$, $J_{\rm HH} = 1$ Hz, bipy), 5.84 (dt, 1H, $J_{\rm HH} = 7$, $J_{\rm HH} = 1$ Hz, bipy), 3.88 (s, 3H, Re*Me*), 3.40 (d, 1H, 11 Hz, CH₂SiMe₃), 2.78 (s, 3H, Re*Me*), 2.35 (d, 1H, 11 Hz, CH₂SiMe₃), 0.46 (s, 9H, CH₂Si*Me*₃). ¹³C{¹H} NMR (C₆D₆): 150.3, 146.6, 146.5, 145.9, 139.0, 135.4, 123.7, 121.9, 121.8, 121.0, 26.4 (CH₂SiMe₃), 21.7 (Re*Me*), 12.9 (Re*Me*), 2.0 (CH₂Si*Me*₃). IR (KBr, Nujol, cm⁻¹): 1605 s, 1330 s, 1259 m, 1240 s, 1159 m, 1016 m, 982 vs, 909 w, 851 s, 832 s, 812 s, 760 s, 725 m, 712 m. A satisfactory analysis was not obtained. *Anal.* Calc. for C₁₆H₂₅N₂OSiRe: C, 40.40; H, 5.30; N, 5.89. Found: C, 39.82; H, 5.03; N, 5.66%.

4.2. Preparation of cis-ReOMe₂(bipy)CH₂Ph (3)

In a Schlenk flask, a mixture of cis- and trans-ReOMe₂(2,2'-bipyridine)Cl (0.17 g, 0.40 mmol) was dissolved in toluene (50 ml). The solution was cooled to - 78°C, and PhCH₂MgCl (0.40 mmol of a 1 M solution in diethyl ether) was added via a microsyringe. The mixture was allowed to warm slowly to r.t. The solution gradually became deep green over a period of 12 h. The resulting solution was then filtered through a glass frit to remove a fine dark precipitate. The volatiles were removed under vacuum, and the residue was extracted with benzene $(4 \times 6 \text{ ml})$. The extracts were combined, and the benzene was removed under vacuum. The resulting dark green solid was extracted with hexanes $(4 \times 15 \text{ ml})$, and the extracts combined and filtered. The volume of the extracts was reduced in half and then cooled to -78° C for 12 h to give a blue precipitate. The green supernatant was removed via cannula and the blue precipitate was dried under vacuum to give 0.10 g (53% yield) of cis-ReOMe₂(bipy)CH₂Ph. ¹H NMR (C₆D₆): δ 8.55 (dd, 1H, $J_{HH} = 5$, $J_{HH} = 1$ Hz, bipy), 7.75 (d, 1H, $J_{\rm HH} = 6$ Hz, bipy), 6.88 (d, 1H, $J_{\rm HH} = 7$ Hz, bipy), 6.64 (d, 1H, $J_{\rm HH} = 8$ Hz, bipy), 6.56-6.47 (m, 4 H), 6.22-6.10 (m, 4 H), 5.90 (dt, 1H, $J_{\rm HH} = 7$, $J_{\rm HH} = 1$ Hz, bipy), 5.73 (d, 1H, $J_{\rm HH} = 12$ Hz, CH₂Ph), 3.97 (s, 3H, ReCH3), 3.94 (d, 1H, $J_{HH} = 12$ Hz, CH_2Ph), 2.90 (s, 3H, $ReCH_3$). ¹³C{¹H} NMR (C₆D₆): 153.8, 149.6, 149.5, 146.2, 145.1, 135.0, 134.2, 126.8, 126.7, 122.3, 121.2, 121.1, 120.9, 120.0, 32.4 (CH₂Ph), 21.3 (ReMe; trans to equatorial N), 9.4 (ReMe; cis to equatorial N). IR (KBr, Nujol, cm^{-1}): 1605 s, 1312 m, 1261 m, 1209 m, 1157 m, 1045 m, 1015 m, 999 m, 970 vs, 909 w, 756 vs, 723 m, 700 s. HRMS Calc. for $C_{18}H_{18}N_2ORe [M-15]^+$: 465.0979. Found: 465.0982.

4.3. Preparation of ReOMe₃(bipy) (4)

In a Schlenk flask, a mixture of *cis*- and *trans*-ReOMe₂(2,2'-bipyridine)Cl (0.31 g, 0.74 mmol) was dissolved in CH₂Cl₂ (50 ml) and cooled to -78° C. An

aliquot of MeLi (0.75 mmol in hexanes) was added via syringe. The mixture was allowed to warm to r.t., and the initially dark solution gradually became blue–green over a period of 3 h. The volatile components were removed under vacuum and the residue extracted with benzene (5×20 ml). The extracts were combined and filtered. The solvent was removed from the filtrate under vacuum to yield 0.27 g of ReOMe₃(bipy) as a blue–green powder (90% yield). The IR and ¹H NMR spectra were consistent with those reported in the literature [15,18]. We report the ¹³C{¹H} NMR spectrum collected in C₆D₆. ¹³C{¹H} NMR (C₆D₆): 150.4, 149.7, 146.9, 145.9, 135.9, 135.1, 122.8, 121.9, 121.4, 121.1, 21.2 (Re*Me*), 8.8 (Re*Me*₂).

4.4. Preparation of trans-ReOMe₂(bipy)(OMe) (5a)

In a Schlenk flask, a mixture of cis- and trans-ReOMe₂(2,2'-bipyridine)Cl (0.10 g, 0.24 mmol) and NaOMe (2 equiv.) was dissolved in either benzene or toluene (20 ml). The dark purple solution slowly turned to turquoise over a period of 15 h. The volatile components were removed under reduced pressure, and the residue was extracted with hexanes $(4 \times 5 \text{ ml})$ and filtered. The solvent was removed from the filtrate under vacuum to yield trans-ReOMe₂(bipy)(OMe) (5a) as a blue-green powder (yield 0.04 g, 40%). ¹H NMR (C₆D₆): δ 8.59 (d, 1H, $J_{\rm HH} = 6$ Hz, bipy), 8.02 (d, 1H, $J_{\rm HH} = 6$ Hz, bipy), 7.30 (d, 1H, $J_{\rm HH} = 8$ Hz, bipy), 6.83 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.56 (dt, 1H, $J_{HH} = 9$, $J_{HH} =$ 1 Hz, bipy), 6.20 (dt, 1H, $J_{HH} = 8$, $J_{HH} = 1$ Hz, bipy), 6.03 (dt, 1H, $J_{HH} = 8$, $J_{HH} = 1$ Hz, bipy), 5.84 (dt, 1H, $J_{\rm HH} = 6, J_{\rm HH} = 1$ Hz, bipy), 5.25 (s, 3H, OMe), 2.27 (s, 6H, Re Me_2). ¹³C{¹H} NMR (C₆D₆): 149.2, 146.9, 146.4, 145.9, 136.0, 135.2, 122.3, 121.4, 121.0, 120.5, 69.1 (ReOMe), 16.1 (Re Me_2). IR (KBr, Nujol, cm⁻¹): 1604 s, 1566 m, 1314 m, 1263 m, 1240 m, 1159 m, 1030 s, 1003 m, 949 vs, 912 m, 758 vs, 725 s. Anal. Calc. for C₁₃H₁₇N₂O₂Re: C, 37.22; H, 4.08; N, 6.68. Found: C, 37.43; H, 3.85; N, 6.35%.

4.5. Preparation of trans-ReOMe₂(bipy)(OEt) (5b)

This compound was prepared using the method used to prepare **5a**. The complex was isolated as a blue– green powder (yield 0.05 g, 50%). ¹H NMR (C₆D₆): δ 8.59 (d, 1H, $J_{HH} = 6$ Hz, bipy), 8.16 (d, 1H, $J_{HH} = 5$ Hz, bipy), 7.30 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.82 (d, 1H, $J_{HH} = 8$ Hz, bipy), 6.56 (dt, 1H, $J_{HH} = 8$, $J_{HH} = 1$ Hz, bipy), 6.19 (dt, 1H, $J_{HH} = 7$, $J_{HH} = 1$ Hz, bipy), 6.02 (dt, 1H, $J_{HH} = 7$, $J_{HH} = 1$ Hz, bipy), 5.83 (dt, 1H, $J_{HH} = 6$, $J_{HH} = 1$ Hz, bipy), 5.43 (q, 2H, $J_{HH} = 7$ Hz, OCH₂Me), 2.28 (s, 6H, ReMe₂), 1.76 (t, 3H, 7 Hz, OCH₂Me). ¹³C{¹H} NMR (C₆D₆): 149.2, 147.8, 146.6, 145.8, 136.0, 135.2, 122.3, 121.4, 120.9, 120.5, 74.7 (ReOCH₂CH₃), 21.0 (ReOCH₂CH₃), 16.2 (ReMe₂). IR (KBr, Nujol, cm⁻¹): 1603 s, 1566 m, 1310 m, 1262 m, 1155 m, 1092 m, 1045 s, 1001 m, 951 vs, 908 m, 758 s, 723 s. *Anal.* Calc. for C14H19N2O2Re: C, 38.79; H, 4.42; N, 6.46. Found: C, 38.76; H, 4.42; N, 6.46%.

4.6. Preparation of $ReOMe(bipy)(CH_2SiMe_3)Cl$ (6)

In a Schlenk flask, a mixture of cis- and trans-ReOMe₂(bipy)(CH₂SiMe₃) (0.10 g, 0.21 mmol) was dissolved in CH₂Cl₂ (50 ml). Over the course of 1 min, HCl was bubbled through the solution. The initially blue-green solution became red, and the volatiles were removed under vacuum. The residue was extracted with benzene $(3 \times 20 \text{ ml})$, and the extracts were combined and filtered. The volatiles were removed from the filtrate under vacuum to give a red-purple powder (0.09 g, 90%), which could be recrystallized from a mixture of benzene/hexanes (1/3) at r.t. to give dark red crystals of 6. ¹H NMR (CD₂Cl₂): δ 9.03 (d, 1H, J_{HH} = 6 Hz, bipy), 8.33 (m, 2H, bipy), 7.82 (d, 1H, $J_{\rm HH} = 8$ Hz, bipy), 7.90 (d, 1H, $J_{\rm HH} = 7$ Hz, bipy), 7.58 (dt, 1H, $J_{\rm HH} = 7$, $J_{\rm HH} = 1$ Hz, bipy), 7.48 (dt, 1H, $J_{\rm HH} = 8$, $J_{\rm HH} = 1$ Hz, bipy), 7.34 (d, 1H, $J_{\rm HH} = 7$ Hz, CH_2SiMe_3), 7.06 (dt, 1H, $J_{HH} = 7$, $J_{HH} = 1$ Hz, bipy), 6.92 (d, 1H, $J_{\rm HH} = 7$ Hz, CH_2SiMe_3), 4.66 (s, 3H, Re*Me*), 0.16 (s, 9H, CH₂Si*Me*₃). ${}^{13}C{}^{1}H$ NMR (CD2Cl2): 154.9, 150.5, 148.1, 140.9, 141.0, 138.7, 125.9, 124.0, 122.9, 121.6, 43.3 (CH₂SiMe₃), 2.0 (ReMe), 1.3 (CH_2SiMe_3) . IR (KBr, Nujol, cm⁻¹): 1605 s, 1570 w, 1313 m, 1240 s, 1159 w, 1022 w, 993 s, 961 m, 849 s, 831 s, 762 s, 707 m, 680 m. Anal. Calc. for C₁₅H₂₂N₂OSiReCl: C, 36.32; H, 4.47; N, 5.65. Found: C, 36.21; H, 4.32; N, 5.67%.

4.7. Preparation of [ReOMe(bipy)(CH₂SiMe₃)(CD₃CN)][PF₆] (7)

In a nitrogen-filled glove box, ReOMe(bipy)-(CH₂SiMe₃)Cl (10 mg) and 1.5 equiv. of AgPF₆ were weighed into a weighing dish and then dissolved in acetonitrile- d_3 . The resulting green solution was transferred to a NMR tube, which was then capped with a rubber septum. ¹H NMR spectra were recorded and integrated relative to C₆Me₆ as an internal standard, which indicated a 99% yield of the cationic Re(V) complex, [ReOMe(bipy)(CH₂SiMe₃)(CD₃CN)][PF₆]. ¹H NMR (CD₃CN): δ 8.93 (d, 1H, $J_{HH} = 6$ Hz, bipy), 8.53 (d, 1H, $J_{HH} = 6$ Hz, bipy), 8.51 (d, 1H, $J_{HH} = 8$ Hz, bipy), 8.32 (d, 1H, $J_{\rm HH} = 8$ Hz, bipy), 8.07 (dt, 1H, $J_{\rm HH} = 8$, $J_{\rm HH} = 1$ Hz, bipy), 7.95 (dt, 1H, $J_{\rm HH} = 8$, $J_{\rm HH} = 1$ Hz, bipy), 7.72 (dt, 1H, $J_{\rm HH} = 7$, $J_{\rm HH} = 1$ Hz, bipy), 7.47 (dt, 1H, $J_{\rm HH} = 7$, $J_{\rm HH} = 1$ Hz, bipy), 7.26 (d, 1H, $J_{\rm HH} = 8$ Hz, $CH_2 SiMe_3$), 6.80 (d, 1H, $J_{\rm HH} = 8$ Hz, CH₂SiMe₃), 4.43 (s, 3H, ReMe), 0.12 (s, 9H, CH_2SiMe_3). ¹³C{¹H} NMR (CD₃CN): 151.5, 150.2, 143.1, 142.6, 142.2, 127.8, 127.3, 127.2, 124.8, 124.6,

124.1, 42.8 (CH_2SiMe_3), 11.9 (ReMe). IR (KBr, CD₃CN solution, cm⁻¹): 2303 s, 2272 s, 2255 s, 1607 m, 1319 m, 1246 m, 1163 w, 1125 w, 1038 m, 1005 m, 837 vs, 770 m, 559 m. Due to the solid-state lability of 7 (vide supra), an elemental analysis was not attempted.

4.8. Kinetics and thermodynamic studies of the reversible isomerization of **2a** and **2b**

The isomerization of 2a to 2b was monitored by ¹H NMR spectroscopy. Solutions of 2a in benzene- d_6 were heated in sealed NMR tubes directly in the probe cavity. The initial concentration of 2a varied between 0.034 and 0.066 M. Periodically, ¹H NMR spectra were recorded, and the methyl resonances of 2a and 2b were integrated relative to 0.001 M C₆Me₆ as an internal standard. The temperature was held within ± 0.1 °C of one of the following temperatures: 55, 60, 65 and 75°C. The isomerization reaction followed reversible first-order kinetics approaching equilibrium and showed fits of data to a common plot of $-\ln\{1 - [cis]/[cis]_{eq}\}$ versus time [16]. The equilibrium constants at each temperature were obtained when no further change in each spectrum was observed. The errors in these values were estimated from typical linear regression analysis [19,20].

Acknowledgements

Support for this research was provided by the Robert A. Welch Foundation. T.R.L. wishes to acknowledge support from the NSF CAREER program (CHE-9625003).

References

- [1] A. Yamamoto, J. Chem. Soc., Dalton Trans. (1999) 1027.
- [2] R.F. Jordan, Adv. Organomet. Chem. 32 (1991) 325.
- [3] C.M. Killian, D.J. Temple, L.K. Johnson, M. Brookhart, J. Am. Chem. Soc. 118 (1996) 11664.
- [4] L.K. Johnson, S. Mecking, M. Brookhart, J. Am. Chem. Soc. 118 (1996) 267.
- [5] L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc. 117 (1995) 6414.
- [6] (a) B.L. Small, M. Brookhart, A.M.A. Bennett, J. Am. Chem. Soc. 120 (1998) 4049. (b) B.L. Small, M. Brookhart, J. Am. Chem. Soc. 120 (1998) 7143.
- [7] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A. Solan, A.J.P. White, D. Williams, J. Chem. Commun. (1998) 849.
- [8] T.R. Younkin, E.F. Connor, J.I. Henderson, S.K. Friedrich, R.H. Grubbs, D.A. Bansleben, Science 287 (2000) 460.
- [9] J.-H. Jung, D.M. Hoffman, T.R. Lee, J. Chem. Soc., Dalton Trans. (1999) 4487.
- [10] J.-H. Jung, D.M. Hoffman, T.R. Lee, J. Organomet. Chem. 599 (2000) 112.
- [11] C.C. Romao, F.E. Kuhn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197.
- [12] D.M. Hoffman, D.A. Wierda, Polyhedron 8 (1989) 959.

- [13] S. Cai, D.M. Hoffman, J.C. Huffman, D. Lappas, H.G. Woo, Organometallics 6 (1987) 2273.
- [14] G. Rouschias, Chem. Rev. 74 (1974) 531.
- [15] W.A. Herrmann, J.G. Kuchler, G. Weichselbaumer, E. Herdtweck, P. Kiprof, J. Organomet. Chem. 372 (1989) 351.
- [16] J.D. Atwood, Inorganic and Organometallic Reaction Mechanisms, Brooks/Cole, Monterey, CA, 1985 Chapter 1.
- [17] D.M. Hoffman, D. Lappas, Polyhedron 15 (1996) 1539.
- [18] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.
- [19] J.C. Miller, J.N. Miller, Statistics for Analytical Chemistry, Wiley, New York, 1988 Chapter IV.
- [20] D.C. Harris, Quantitative Chemical Analysis, Freeman, New York, 1991 Chapter 3.